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The geometry of WZW branes
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Abstract

The structures in target space geometry that correspond to conformally invariant boundary con-
ditions in WZW theories are determined both by studying the scattering of closed string states and
by investigating the algebra of open string vertex operators. In the limit of large level, we find branes
whose world volume is a regular conjugacy class or, in the case of symmetry breaking boundary
conditions, a ‘twined’ version thereof. In particular, in this limit one recovers the commutative
algebra of functions over the brane world volume, and open strings connecting different branes
disappear. At finite level, the branes get smeared out, yet their approximate localization at (twined)
conjugacy classes can be detected unambiguously.

It is also established that in any rational conformal field theory the structure constants of the
algebra of boundary operators coincide with specific entries of fusing matrices. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Conformally invariant boundary conditions in two-dimensional conformal field theories
have recently attracted renewed attention. By now, quite a lot of information on such bound-
ary conditions is available in the algebraic approach, including boundary conditions that do
not preserve all bulk symmetries. In many cases, the conformal field theory of interest has
also a description as a sigma model with target spaceM. It is then tempting to ask what
the geometrical interpretation of these boundary conditions might be in terms of submani-
folds (and vector bundles on them or, more generally, sheaves) ofM. Actually, this question
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makes an implicit assumption that is not really justified: It is not the classical (commutative)
geometry of the targetM that matters, but rather a non-commutative version [1] of it.

In the present note, we investigate the special case of WZW conformal field theories. For
most of the time we restrict our attention to the case where the torus partition function is given
by charge conjugation. Then the classical target space is a real simple compact connected
and simply connected Lie group manifoldG. In particular, the underlying manifold is
parallelizable, i.e. its tangent bundle is a trivial bundle.

The latter property of Lie groups will allow us to apply methods that were developed in [2],
by which geometric features of the D-brane solutions of supergravity in flat 10-dimensional
space–time were recovered from the boundary state for a free conformal field theory. The
basic idea of that approach was to compute the vacuum expectation value of thebulk field
that corresponds to theclosedstring state

α
µ
−1α̃

ν
−1|q〉 ⊗ |q̃〉 (1.1)

on a disk with a boundary conditionβ of interest. Here our convention is that quantities with-
out a tilde correspond to left-movers, while those with a tilde correspond to right-movers.
The operatorαµn is thenth mode of theu(1) current in theµ-direction of the free conformal
field theory. The symmetric traceless part of the state (1.1) corresponds to the graviton, the
antisymmetric part of the state to the Kalb–Ramond field, and the trace to the dilaton, all
of momentumq.

Let us explain the rationale behind this prescription. At first sight it might seem more nat-
ural to employ graviton scattering in the background of a brane for exploring the geometry.
This would correspond, in leading order of string perturbation theory, to the calculation of
a two-point correlation function for two bulk fields on the disk. However, by factorization
of bulk fields such an amplitude is related to (a sum of) products of three-point functions on
the sphere with one-point functions on the disk. Since the former amplitude is completely
independent of the boundary conditions, all information on a boundary condition that can
be obtained by use ofbulk fields will therefore be obtainable from correlators involving a
single bulk field. Similar factorization arguments also encourage us to concentrate on world
sheets with the topology of a disk.

The idea of testing boundary conditions with vacuum expectation values of bulk fields
finds an additional justification in the following reasoning. In terms of classical geometry,
boundary conditions are related to vector bundles over submanifolds of the target manifold
M, the Chan–Paton bundles. Such bundles, in turn, should be regarded as modules over the
ringF(M) of functions onM. Heuristically, we may interpret the algebra of (certain) bulk
fields as a quantized version ofF(M). The expectation values of the bulk fields on a disk
then describe how the algebra of bulk fields is represented on the boundary operators or,
more precisely, on the subspace of boundary operators that are descendants of the vacuum
field. (As a side remark we mention that boundary conditions are indeed most conveniently
described in terms of suitableclassifying algebras. These encode aspects of the action of
the algebra of bulk operators on boundary operators.)

The relevant information for computing the one-point functions on a disk with boundary
conditionβ is encoded in aboundary stateBβ , which is a linear functional,



164 G. Felder et al. / Journal of Geometry and Physics 34 (2000) 162–190

Bβ : ⊕
q,q̃
Hq ⊗Hq̃ → C (1.2)

on the space of closed string states. (For an uncompactified free boson, the left-and right-moving
labels of the primary fields are related asq̃ = q.) We are thus led to compute the function

G
µν
β (q) := Bβ(αµ−1α̃

ν
−1|q〉 ⊗ |q̃〉). (1.3)

Using the explicit form of the boundary state, this quantity has been determined in [2].
Upon Fourier transformation, it gives rise to a functionG̃µνβ (x) on position space. It has
been shown that the symmetric traceless part of the functionGβ reproduces the vacuum
expectation value of the graviton in the background of a brane, while the antisymmetric
part gives the Kalb–Ramond field, and the trace the dilaton.

In order to see how these findings generalize to the case of (non-abelian) WZW theories,
let us examine the structural ingredients that enter in these calculations. Boundary states
can be constructed for arbitrary conformal field theories, in particular for WZW models.
Moreover, since group manifolds are parallelizable, it is also straightforward to generalize
the oscillator modesαν−n: they are to be replaced by the corresponding modesJ an of the
non-abelian currentsJ a(z). Here the upper indexa ranges over a basis of the Lie algebra
of G, a = 1,2, . . . ,dimG, andn ∈ Z. Together with a central elementK, these modes
span an untwisted affine Lie algebrag, according to

[J an , J
b
m] =

∑
c

f abc J cn+m + nKκabδn+m,0. (1.4)

Heref abc andκab are the structure constants and Killing form, respectively, of the finite-
dimensional simple Lie algebrāg whose compact real form is the Lie algebra of the Lie
group manifoldG. Notice that the generators of the formJ a0 form a finite-dimensional
subalgebra, called the horizontal subalgebra, which can (and will) be identified withḡ.

We finally need to find the correct generalization of the state|q〉. To this end we note that
|q〉 is the vector in the Fock space of chargeq with lowest conformal weight. For WZW
theories, instead of this Fock space, we have to consider the following space. First, we must
choose a non-negative integer valuek for the level, i.e. the eigenvalue of the central element
K. The space of physical states of the WZW theory with charge conjugation modular
invariant is then the direct sum

⊕
λ∈Pk
Hλ ⊗Hλ+ , (1.5)

whereHλ is the irreducible integrable highest weight module ofg at levelk with highest
weightλ, andPk is the (finite) set of integrable weightsλ of g at levelk. Every suchg-weight
λ corresponds to a unique weight of the horizontal subalgebraḡ (which we denote again
by λ), which is the highest weight of a finite-dimensionalḡ-representation. However, for
finite levelk, not all such highest weights ofḡ appear; this truncation will have important
consequences later on.

Unlike in the case of Fock modules, the subspace of states of lowest conformal weight
in the moduleHλ is not one-dimensional any longer. Rather, it constitutes the irreducible
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finite-dimensional moduleH̄λ of the horizontal subalgebrāg. Therefore, in place of the
function (1.3) we now consider

Gabβ (v ⊗ ṽ) := Bβ(J a−1J̃
b
−1 |v〉 ⊗ |ṽ〉) (1.6)

for

v ⊗ ṽ ∈ ⊕
λ∈Pk
H̄λ ⊗ H̄λ+ . (1.7)

As a matter of fact, one may also look at analogous quantities involving other modesJ an , or
combinations of modes, or even without any mode present at all. It turns out that qualitatively
their behavior is very similar to the functions (1.6); they all signal the presence of a defect
at the same position in target space. Our results are therefore largely independent on the
choice of the bulk field we use to test the geometry of the target.

The functionGabβ can be determined from known results about boundary conditions in
WZW models. This allows us to analyze WZW brane geometries via expectation values
of bulk fields. Another approach to these geometries is via the algebra of boundary fields.
While the second setup focuses on intrinsic properties of the brane world volume, the first
perspective offers a natural way to study the embedding of the brane geometry into the
target. Both approaches will be studied in this paper.

We organize our discussion as follows. In Section 2 we compute the functionGabβ for
those boundary conditions which preserve all bulk symmetries. To relate this function to
classical geometry of the group manifoldG, we perform a Fourier transformation. We then
find that the end points of open strings are naturally localized at certain conjugacy classes
of the groupG. At finite levelk, the locus of the end points of the open string is, however,
smeared out, though it is still well peaked at a definite regular rational conjugacy class. The
absence of sharp localization at finite levelk shows that, even after having made the relation
to classical geometry, the brane exhibits some intrinsic ‘fuzziness’. It should, however, be
emphasized that at finite level the very concept of both the target space and the world volume
of a brane as classical finite-dimensional manifolds are not really appropriate.

The algebra of boundary fields for symmetry preserving boundary conditions is analyzed
in Section 3. We show that for any arbitrary rational conformal field theory the boundary
structure constants are equal to world sheet duality matrices, the fusing matrices, according
to

C
αAβBγC

λµLν =
(

FLνC,Aβ+B

[
λ µ

α+ γ

])∗
. (1.8)

Furthermore, we are able to show that in the limit of largek the space of boundary operators
approaches the space of functions on the brane world volume. In the same limit open strings
connecting different conjugacy classes disappear, while such configurations are present at
every finite value of the level.

In Section 4 we discuss symmetry breaking boundary conditions in WZW theories for
which the symmetry breaking is characterized through an automorphismω of the horizontal
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subalgebrāg. 1 It turns out that the end points of open strings are then localized attwined
conjugacy classes, i.e. at sets of the form

CωG(h) := {ghω(g)−1 |g ∈ G} (1.9)

for someh ∈ G. The derivation of our results on symmetry breaking boundary conditions
requires generalizations of Weyl’s classical results on conjugacy classes. (The necessary
tools, including a twined version of Weyl’s integration formula, are collected in Appendix
B.) In Section 5, we extend our analysis to non-simply connected Lie groups. We find fea-
tures that are familiar from the discussion of D-branes on orbifold spaces, such as fractional
branes, and point out additional subtleties in cases where the action of the orbifold group
is only projective.

2. Probing target geometry with bulk fields

We start our discussion with the example of boundary conditions that preserve all bulk
symmetries. In this situation the correlators on a surface with boundaries are specific linear
combinations of the chiral blocks on the Schottky double of the surface [3]. The boundary
state describes the one-point correlators for bulk fields on the disk and accordingly, it is a
linear combination of two-point blocks on the Schottky cover of the disk, i.e. on the sphere.
The latter — which in the present context of correlators on the disk also go under the name
of Ishibashi states — are linear functionals

Bλ : Hλ ⊗Hλ+ → C (2.1)

that are characterized by the Ward identities

Bλ ◦ (J an ⊗ 1 + 1 ⊗ J a−n) = 0. (2.2)

Choosing an elementv⊗ ṽ ∈ H̄λ ⊗ H̄λ+ , we can use the invariance property (2.2) and the
commutation relations (1.4) to arrive at

Bλ(J
a
−1v ⊗ J b−1ṽ)= −Bλ((1 ⊗ J a1 J

b
−1)(v ⊗ ṽ)) = −Bλ((1 ⊗ [J a1 , J

b
−1])(v ⊗ ṽ))

= −
∑
c

f abc Bλ(v ⊗ J c0 ṽ)− κabk Bλ(v ⊗ ṽ). (2.3)

There is one symmetry preserving boundary condition for each primary fieldα in the
theory [4]. The coefficients in the expansion of the boundary states with respect to the
boundary blocks are given by the so-called (generalized) quantum dimensions:

Bα =
∑
λ∈Pk

Sλ,α

SΩ,α
Bλ. (2.4)

HereS is the modular S-matrix of the theory andΩ refers to the vacuum primary field.
To write the state (2.4), in a more convenient form, we use the fact that the generalized

1 Not all symmetry breaking boundary conditions of WZW theories are of this form.
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quantum dimensions are given by the values of theḡ-character ofH̄λ at specific elements
yα of the Cartan subalgebra of the horizontal subalgebraḡ or, equivalently, by the values
of theG-character ofH̄λ at specific elementshα of the maximal torus of the groupG.
Concretely, we have

Sλ,α/SΩ,α = χλ(hα) (2.5)

with

χλ(h) := trH̄λ
Rλ(h) (2.6)

and

hα := exp(2π iyα) with yα := α + ρ

k + g∨ (2.7)

for any levelk and ḡ-weightα. In formula (2.7),ρ denotes the Weyl vector (i.e. half the
sum of all positive roots) of̄g andg∨ is the dual Coxeter number. The boundary state thus
reads

Bα =
∑
λ∈Pk

χλ(hα)Bλ. (2.8)

The functionGabα defined in formula (1.6) is then found to be

Gabα (v ⊗ ṽ) = −χλ(hα)[Bλ(v ⊗ [J a0 , J
b
0 ]ṽ)+ κabk Bλ(v ⊗ ṽ)] (2.9)

for v ⊗ ṽ ∈ H̄λ ⊗ H̄λ+ .
We recall that the group characterχ is a class function, i.e. a function that is constant on

the conjugacy classes

CG(h) := {ghg−1|g ∈ G} (2.10)

ofG. It is therefore quite natural to associate to a symmetry preserving boundary condition
the conjugacy classCG(hα) of the Lie groupG that contains the elementhα. We would like
to emphasize thatCG(hα) is always aregularconjugacy class, i.e. the stabilizer ofhα under
conjugation is just the unique maximal torus containing this element.

Our next task is to perform the analog of the Fourier transformation betweenGµν andG̃µν

in [2]. To this end we employ the fact that left and right translation on the group manifold
G give two commuting actions ofG on the spaceF(G) of functions onG and thereby
turn this space into aG-bimodule. By the Peter–Weyl theorem,F(G) is isomorphic, as a
G-bimodule, to an infinite direct sum of tensor products of irreducible modules, namely

F(G) ∼= ⊕
λ∈P
H̄λ ⊗ H̄λ+ . (2.11)

HereP ≡ Pk=∞ is the set of all highest weights of finite-dimensional irreducibleḡ-modules.
We may identify the conjugate modulēHλ+ with the dual ofH̄λ. Then the isomorphism
(2.11) sendsv ⊗ ṽ ∈ H̄λ ⊗ H̄λ+ to the functionf onG given by

f (g) = ṽ(Rλ(g)v) ≡ 〈ṽ|Rλ(g)|v〉 (2.12)
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for all g ∈ G. Using the scalar product onF(G), we can therefore associate to every linear
functionalβ : F → C a function (respectively, in general, a distribution)β̃ on the group
manifold by the requirement that

β(v ⊗ ṽ) =
∫
G

dg β̃(g)∗〈ṽ|Rλ(g)|v〉 (2.13)

for v ⊗ ṽ ∈ H̄λ ⊗ H̄λ+ . After introducing dual bases{vi} of H̄λ and {ṽj } of H̄λ+ , the
orthonormality relations for representation functions then allow us to write

β̃(g) =
∑
λ∈P

∑
i,j

β(vi ⊗ ṽj )
∗〈ṽj |Rλ(g)|vi〉. (2.14)

According to (1.7), at finite level we have to deal with the finite-dimensional truncations

Fk(G) := ⊕
λ∈Pk
H̄λ ⊗ H̄λ+ (2.15)

of the space (2.11) of functions onG. For everyk, the spaceFk(G) can be regarded as
a subspace ofF(G). We will do so from now on; thereby we arrive at a picture that is
close to classical intuition. The level-dependent truncation (2.15) constitutes, in fact, one of
the basic features of a WZW conformal field theory. (This is a typical effect in interacting
rational conformal field theories, which does not have an analog for flat backgrounds.)

Next we relate the linear functionGab onFk to a functionG̃ab on the group manifoldG
by the prescription

G̃ab(g) :=
∑
λ∈Pk

∑
i,j

Gab(vi ⊗ ṽj )
∗〈ṽj |Rλ(g)|vi〉 (2.16)

for g ∈ G. By direct calculation we find

Gab(g)= −
∑
λ∈Pk

(
κabk

S∗
λ,α

SΩ,α
trH̄λ

Rλ(g)+
∑
c

f abc
S∗
λ,α

SΩ,α
trH̄λ

J cRλ(g)

)

= −κabk
∑
λ∈Pk

χλ(hα)
∗ χλ(g)−

∑
λ∈Pk

χλ(hα)
∗ trH̄λ

[J a, J b]Rλ(g). (2.17)

In analogy with the situation for flat backgrounds [2] we are led to the following interpreta-
tion of this result. The first term in the expression (2.17) is symmetric and hence describes
the vacuum expectation value of dilaton and metric that is induced by the presence of the
brane, while the second term, which is antisymmetric, corresponds to the vacuum expecta-
tion value for the Kalb–Ramond field.

To proceed, we introduce, for everyk ∈ Z>0, a functionϕk onG×G by

ϕk(g, h) :=
∑
λ∈Pk

χλ(g)χλ(h)
∗. (2.18)

In the limit k → ∞ the integral operator associated toϕk reduces to theδ-distribution on
the space of conjugacy classes. Indeed, because of limk→∞Pk = P , for every class function
f onG we have
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G

dh lim
k→∞

ϕk(g, h) f (h) = f (g), (2.19)

which is a consequence of the general relation∫
G

dg χV (g)
∗χW(g) = dim(HomG(V,W)) (2.20)

valid for any twoG-modulesV,W . Comparison with the result (2.17) thus shows that, in
the limit of infinite level, the brane is localized at the conjugacy classCG(hα) of G. It is
worth emphasizing, however, that this holds true only in that limit. In contrast, at finite level,
the brane world volume isnot sharply localized on the relevant conjugacy classCG(hα).
Rather, it gets smeared out or, in more fancy terms, its localization is on a ‘fuzzy’ version of
a conjugacy class. Nevertheless, already at very small level the localization is sufficiently
sharp to indicate unambiguously what remains in the limit.

For concreteness, we display a few examples for boundary conditions withg = sl(2) in
Fig. 1. The functions of interest are

fk,α(h) := N J (h)

∣∣∣∣∣∣
∑
λ∈Pk

χλ(hα) χλ(h)

∣∣∣∣∣∣
2

, (2.21)

whereJ is the weight factor in the Weyl integration formula (see (A.3) and (A.8)) andN is
a normalization constant which is determined by the requirement that

∫
T

dh f (h) = 1. For
sl(2), we haveT = [0,2] andJ (z) = sin2(πz). The functions (2.21) are then given by

fk,x(z) = Nk,x
(

k∑
λ=0

sin((λ+ 1)πx) sin(πz)

)2

(2.22)

for z ∈ [0,1), wherek ∈ Z>0 andx = (µ+1)/(k+2)withµ ∈ {0,1, . . . , k}. The examples
plotted in Fig. 1 are for conjugacy classesx = 1/6 and 1/2 and for levelsk = 4, 10 and
28.

Closer inspection of thesl(2) data also shows that the sharpness of the localization scales
with k + g∨. More specifically, for any given conjugacy classx and any fractionp of
κ = (k + 2)−1, the integrated densityIx,p := ∫ x+κ/p

x−κ/p dz f (z) depends only very weakly
on the level. In fact, we have collected extensive numerical evidence that even after taking
this rescaling into account, the localization improves when the level gets larger, i.e. that
Ix,p(k) is monotonically increasing withk. (The improvement is not spectacular, though.
For instance,Ix=κ,1 rises from 0.9829 atk = 3 to 0.9889 atk = 20 andIx=κ,3 rises from
0.6063 to 0.6074.)

Note in particular that all brane world volumes are concentrated onregular conjugacy
classes and that already at small level the overlap with the exceptional conjugacy classes
(i.e.x = 0 andx = 1 for g = sl(2)) is negligible. Indeed, as is clearly exhibited by the last
mentioned data, even the level-dependentallowed conjugacy classes that, at fixed level, are
closest to an exceptional class (i.e.x = κ for g = sl(2)) arenotdriven into the exceptional
one in the infinite level limit. (Thus, in this respect, our findings do not agree with the
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Fig. 1. The function (2.22) for branes centered at the conjugacy classesx = 1/6 andx = 1/2 for levels 4, 10 and
28.

prediction of the semi-classical analysis in [5,6]. The origin of this discrepancy appears to
be the absence of the shiftk 7→ k+g∨ in the classical setup. This shift occurs also naturally
in other quantities like e.g. in character formulæ and conformal weights.) This result will
be confirmed by the investigation of the algebra of boundary operators, to which we now
turn our attention.

3. The algebra of boundary fields

In this section we focus our attention on the operator product algebra of (WZW-primary)
boundary fields. As a first basic ingredient, we need to determine by which quantum numbers
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such a field is characterized. Boundary points are precisely those points of a surface that
have a unique pre-image on its Schottky cover. Accordingly, on the level of chiral conformal
field theory, boundary operators are characterized by a single primary labelλ. 2 When all
bulk symmetries are preserved, this label takes its values in the set of chiral bulk labels. (In
the presence of symmetry breaking boundary conditions, the analysis has to be refined, see
[7,8].) Moreover, a boundary operator typically changes the boundary condition; therefore,
it carries two additional labelsα, β which indicate the two conformally invariant boundary
conditions at the two segments adjacent to the boundary insertion.

Boundary operators are therefore often written asΨ
βα
λ (x). But, in fact, this is still not

sufficient, in general. The reason is that field-state correspondence requires to associate to
everystate that contributes to the partition function

Aαβ(t) =
∑
µ

A
µ
αβ χµ

(
it

2

)
(3.1)

for an annulus with boundary conditionsα andβ a separate boundary field. For symmetry
preserving boundary conditions, the annulus coefficientsA

µ
αβ are known [4]3 to coincide

with fusion rule coefficients

A
µ
αβ = Nα

βµ. (3.2)

The fusion rulesNα
βµ are not, in general, zero or one; as a consequence one must introduce

another degeneracy labelA, taking values in{1,2, . . . , Nα+βµ} [6,7,9]. The complete
labeling of boundary operators therefore looks like

Ψ
βAα
λ (x). (3.3)

We remark in passing that in more complicated situations, like e.g. symmetry breaking
boundary conditions [7] or non-trivial modular invariants [10], the degeneracy spaces rel-
evant for the boundary operators still admit a representation theoretic interpretation that
involves appropriate (sub-)bundles of chiral blocks.

The boundary fields satisfy an operator product expansion which schematically reads

Ψ
αAβ
λ (x)Ψ βBγ

µ (y) ∼
∑
ν

Nνλµ∑
L=1

N
γ
αν∑

C=1

C
αAβBγC

λµLν [Ψ αCγ
ν (y)+ · · · ], (3.4)

whereL ∈ {1,2, . . . , Nν
λµ} labels a basis of the space of chiral couplings fromλ andµ to

ν. For every (rational) conformal field thoery, the structure constantsC
αAβBγC

λµLν appearing
here are nothing but suitable entries of fusing matricesF:

C
αAβBγC

λµLν =
(

FLνC,Aβ+B

[
λ µ

α+ γ

])∗
. (3.5)

2 For WZW models, we are actually also interested in the horizontal descendants, which have the same conformal
weight as the primary field. Thenλ should be regarded as a pair consisting of both the highest weight and the
relevant actual̄g-weight. Correspondingly, in the operator product (3.4) below one must then in addition include
the appropriate Clebsch–Gordan coefficients ofḡ.

3 Compare also [6] for arguments in a Lagrangian setting.
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Recall that the fusing matrices describe the transition between thes-and thet-channel of
four-point blocks; pictorially, in our conventions, this relation looks like

(3.6)

To establish the identity, we observe that the operator product coefficientsC
αAβBγC

λµLν

furnish a solution of the sewing constraint [11,12] that arises from the two different factor-
izations of a correlation function of four boundary fields. Including all degeneracy labels,
this sewing relation reads

Nαγρ∑
E=1

C
αAβBγE

κλKρ C
γCδDαE

µνLρ+ C
αEγEα

ρρ+Ω =
∑
σ

Nσλµ∑
M=1

Nν
+
κσ∑

N=1

N
β
δσ∑

F=1

C
βBγCδF

λµMσ C
αAβFδD

κσNν+ CαDδDα
ν+νΩ

·FMσN,KρL
[
λ µ

κ ν

]
, (3.7)

whereF
[
λ µ

κ ν

]
is the fusing matrix which relates the two different factorizations. For

WZW models, the fusing matrices coincide with the 6j -symbols of the corresponding
quantum group with deformation parameter ak + g∨th root of unity. The constraint (3.7)
can be solved explicitly in full generality, without reference to the particular conformal field
theory under investigation. First note that the structure constantsC

αAβBγC

λµLν depend on six
chiral and four degeneracy labels, so that their label structure is precisely the same as the
one of the fusing matrices. The key observation is then to realize the similarity between the
constraint (3.7) and the pentagon identity

Nαγρ∑
E=1

FKκ+A,Bγ+E

[
λ ρ+

β+ α

]
· FLρ+E,Cδ+D

[
µ ν

γ+ α

]

=
∑
σ

Nσλµ∑
M=1

Nκ
+
σν∑

N=1

N
β
δσ∑

F=1

FMσF,Bγ+C

[
λ µ

β+ δ

]

·FNκ+A,Fδ+D

[
σ ν

β+ α

]
· FLρ+K,MσN

[
µ ν

λ κ

]
(3.8)

for the fusing matrices.4 Indeed, it is not too difficult to show that under the identification

4 The structural similarity between the factorization constraint (3.7) and the pentagon identity was already used
in [9] to deduce the identification (3.5). In this context, we would like to stress that the fusing matrices are entirely
defined in terms of chiral conformal field theory.
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(3.5) the constraint (3.7) becomes —after exploiting the tetrahedral (S4− ) symmetry [13]
of the fusing matrices in order to replace5 some of the fusing matrix entries by different
ones —nothing but the (complex conjugated) pentagon identity (3.8).

A more direct way to understand the result (3.5) is by interpreting the boundary fields
Ψ
αAβ
λ as (ordinary) chiral vertex operators, which pictorially amounts to the prescription

(3.9)

The operator product (3.4) then describes the transition

(3.10)

from which one can read off the desired identification (3.5) between boundary structure
constants and fusing matrices.

Thus we conclude that the boundary structure constants are indeed nothing but suitable
entries of fusing matrices. (For the case of Virasoro minimal models, this has already been
observed in [14] using special properties of those models.) It should be noted, however,
that the fusing matrices are not completely determined by the pentagon identity and their
tetrahedral symmetry. Rather, there is a gauge freedom related to the possibility of perform-
ing a change of basis in the spaces of chiral three-point couplings. In the present setting,
the gauge invariance corresponds to the freedom in choosing a basis in the space of all
boundary fieldsΨ αAβ

λ with fixedλ andα, β. Once the gauge freedom has been fixed at the
level of chiral three-point couplings, it is natural to make the same gauge choice also for
the boundary fields.

We now show that, upon appropriately taking the limit of infinite level, the algebra of
those boundary operators that do not change the boundary condition approaches the algebra
F(G/T ) of functions on the homogeneous spaceG/T , whereT is a maximal torus of the
Lie groupG. This spaceG/T is of interest to us because every regular conjugacy class
of G is, as a differentiable manifold, isomorphic toG/T . Our result therefore perfectly
matches the fact that the fusing matrices of WZW models can be expressed with the help
of k+g∨th roots of unity, i.e. again the levelk gets shifted by the dual Coxeter numberg∨.
Correspondingly, the weights are shifted by the Weyl vector so that, again, we are naturally
led to regular conjugacy classes.

5 Note that the tetrahedral transformations that do not preserve the orientation of the tetrahedron involve complex
conjugation ofF. Also, by the tetrahedral symmetry, the structure constants involving the vacuum labelΩ are just
combinations of quantum dimensions, and these precisely cancel against the quantum dimensions coming from
the other tetrahedral transformations that have to be performed. More details will be given elsewhere.
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We start our argument by regarding the algebraF(G/T ) as a leftG-module only, rather
than as an algebra. The moduleF(G/T ) is fully reducible and can be decomposed as
follows. According to (2.11), the spaceF(G) of functions onG is aG-bimodule under left
and right translation. Since the right action ofT onG is free, we can then identifyF(G/T )
with the subspace ofT -invariant functions onG,

F(G/T ) = F(G)T ∼= ⊕
λ∈P
H̄λ ⊗ (H̄λ+)T . (3.11)

Furthermore, invariance under the maximal torusT just picks the weight space for weight
zero. Thus we find

F(G/T ) ∼= ⊕
λ∈P

mult(λ)0 H̄λ (3.12)

as an isomorphism ofḡ-modules, where mult(λ)0 is the multiplicity of the weightµ = 0 in the
irreducible moduleH̄λ with highest weightλ. Thus, in particular, only modules belonging
to the trivial conjugacy class of̄g-modules appear in the decomposition (3.12). Recall that
the boundary operators are organized in terms of modulesHλ of the affine Lie algebrag. Our
aim is to show that the algebra of boundary fields that correspond to states of lowest grade
in the modulesHλ, i.e. which are either primary fields or horizontal descendants,6 carries
a leftG-module structure that in the limit of infinite level coincides with the decomposition
(3.12).

When restricting to this finite subspaceFk of boundary operators, via field-state corre-
spondence the annulus amplitudes tell us thatFk carries the structure of aG-module and
as aG-module it is isomorphic to the direct sum

Fk ∼= ⊕
µ,ν∈Pk

AλµνH̄λ (3.13)

of irreducibleG-modules. Thus, to perform a more quantitative analysis of the algebra of
boundary operators, we need to control the values of the annulus coefficientsAλµν . Since
according to the identity (3.2), as long as all bulk symmetries are preserved, these numbers
just coincide with the fusion rules coefficients,Aλµν = Nµ+νλ, we are interested in concrete
expressions for the fusion rules. It turns out that they can be expressed through suitable
weight multiplicities in the following convenient form:

Nµν+λ = 1

|W |
∑

w1,w2∈W
ε(w1) ε(w2)

∑
β∈L∨

mult(λ)−w1(µ+ρ)+w2(ν+ρ)−β(k+g∨). (3.14)

HereW is the Weyl group of̄g andε its sign function, and the sum overβ extends over the
coroot latticeL∨ of ḡ. The relation (3.14) can be derived by combining the Kac–Walton
formula for WZW fusion coefficients with Weyl’s character formula and Weyl’s integration
formula. For details, see Appendix A.

6 In general conformal field theories, there is no underlying ‘horizontal’ structure, unlike in WZW models. It is
not clear whether, in general, it is the set of states of lowest conformal weight, or e.g. the quotient (called ‘special
subspace’) ofHλ that was introduced in [15], that is relevant in this argument. But already for WZW models this
truncation is not sufficiently well understood.
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We are interested in the behavior of the numbers (3.14) in the limit of largek. As for
boundary conditions, this limit must be taken with care. As we have seen, they can be labeled
either by conjugacy classes of group elementshα or by the correspondinḡg-weightsα. But
the relation (2.7) between these two types of data involves explicitly the levelk, so that we
have to decide which of the two is to be kept fixed in the limit. In the present context, we
keep the conjugacy classes fixed. Accordingly we consider two sequences, denoted byµk

andνk, of weights such that

yµ := µk + ρ

k + g∨ and yν := νk + ρ

k + g∨ (3.15)

do not depend onk (and exp(2π iyµ) and exp(2π iyν) are regular elements of the maximal
torusT of G).

In terms of these quantities, in formula (3.14) the multiplicity of the weight

µk := (k + g∨)(−w1(yµ)+ w2(yν)− β) (3.16)

appears, with fixedyµ andyν (and fixedw1, w2 andβ). At largek this weight becomes
larger than any non-zero weight of the moduleH̄λ, except when the relation

−w1(yµ)+ w2(yν)− β = 0 (3.17)

is satisfied. As a consequence, at large level, the action of the elementw2 of the Weyl group
W of ḡ on the regular elementyν must coincide with the action of the element(w1, β) of the
corresponding affine Weyl group̂W onyµ. This, however, is possible only whenyµ = yν

and then it follows thatβ = 0 as well asw1 = w2. Thus the requirement (3.17) has|W |
many solutions. We thus obtain in the limit of infinite level

lim
k→∞

Nµ+
k νkλ

= δyµ,yνmult(λ)0 . (3.18)

In view of the relation between fusion rules and annulus coefficients we thus learn that, in
the limit of large level, only those pairs of boundary conditions contribute which correspond
to identical conjugacy classes, or in other words, only those open strings survive which
start and end at the same conjugacy class. (For every finite value ofk, however, such open
strings are still present.) Moreover, in this limit the non-vanishing annulus partition function
becomes

lim
k→∞

Ayµ yµ(t) =
∑
λ∈P

mult(λ)0 χλ(it/2), (3.19)

so that (3.13) simplifies to

lim
k→∞

Fk ∼= ⊕
λ∈P

mult(λ)0 H̄λ. (3.20)

This space is indeed nothing butF(G/T ) as appearing in (3.12). Our result indicates in
particular that the algebra of boundary operators that do not change the boundary condition
is related to the space offunctionson the brane world volume. This should be regarded as
empirical evidence for a statement that is not obvious in itself, since in general non-trivial
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vector bundles over the brane can appear as Chan–Paton bundles, so that boundary operators
might as well be related to sections of non-trivial bundles rather than to functions.

In summary, in the limit of infinite level those boundary operators that belong to states in
the finite-dimensional subspacēHλ ⊆ Hλ of lowest conformal weight furnish aG-module
that is isomorphic to the algebraF(G/T ) of functions on a regular conjugacy class, seen
as aG-module.

So far we have considered the spaces of our interest only asG-modules. But we would
like to equip bothF(G) and the space of boundary operators also with an algebra structure.
The operator product algebra of boundary operators, whose structure constants are, as we
have seen, fusing matrices, obeys certain associativity properties. These properties are not
immediately related to ordinary associativity, because the definition of the operator product
involves a limiting procedure.

Several proposals have been made recently for the relation between the operator product
algebra of boundary operators and the algebraF(G/T ). An approach based on deformation
quantization was proposed in [16]. The definition of the product then involves fixing the
insertion points of the two boundary fields at prescribed positions in parameter space. As
the theory in question isnot topological, one is thus forced to introduce arbitrary and
non-intrinsic data — in contrast to the situation with topological theories studied in [17].
Another proposal [18] starts from a restriction of the operator product algebra to fields
that correspond to the states of lowest conformal weight in the affine irreducible modules.
This destroys associativity. The prescription in [18] also allows only for open strings that
have both end points on one and the same brane. This is difficult to reconcile with the fact
that (compare formula (3.19) above) open strings connecting different branes can only be
ignored in the limit of infinite level.

4. Symmetry breaking boundary conditions

We now turn to boundary conditions of WZW models that break part of the bulk sym-
metries. One important class of consistent boundary conditions can be constructed by pre-
scribing an automorphismω of the chiral algebra that connects left movers and right movers
in the presence of a boundary. In this case the boundary condition is said to haveautomor-
phism typeω. We point out, however, that also boundary conditions are known for which
no such automorphism exists. A WZW example is provided byso(5) at level 1; in this
example, there is a conformal embedding with a subalgebra isomorphic tosl(2) at level 10,
and one can classify boundary conditions (see [9]) that preserve only thesl(2) symmetries.
However, no general theory for such boundary conditions without automorphism type has
been developed so far and we will not consider them in the present paper.

Every boundary condition preserves some subalgebraĀ of the full chiral algebraU;
because of conformal invariance,Ā contains the Virasoro subalgebra ofU. For boundary
conditions that do possess an automorphism typeω, the preserved subalgebraĀ ⊆ U can
be characterized as an orbifold subalgebra, namely as the algebraĀ = U<ω> consisting of
elements that are fixed underω. A theory treating such boundary conditions for arbitrary
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conformal field theories has been developed in [7,8]. In the case of interest to us, the relevant
automorphisms of the chiral algebra are induced by automorphismsω of the horizontal
subalgebrāg of the untwisted affine Lie algebrag that preserve the compact real form of
ḡ. Via the construction (1.4) of affine Lie algebras as centrally extended loop algebras,
every such automorphismω extends uniquely to an automorphism ofg. By a slight abuse
of notation we denote this automorphism byω, too.

We briefly summarize some of the results that we will derive in this section. In the
same way that symmetry preserving boundary conditions are localized at regular conjugacy
classes, the boundary conditions of automorphism typeω are localized at the submanifolds

CωG(h) := {ghω(g)−1|g ∈ G}, (4.1)

to which we refer as twined conjugacy classes withh ∈ G of the form (2.6). In the case of
sl(2) or, more generally, wheneverω is an inner automorphism ofg, the twined conjugacy
classes are just tilted versions of ordinary conjugacy classes. More precisely, they can be
obtained from ordinary conjugacy classes by right translation,CAds

G (h) = CG(hs) s−1.
In the case of outer automorphisms, the dimension of twined conjugacy classes differs

from the dimension of ordinary ones. While ordinary regular conjugacy classes are isomor-
phic to the homogeneous spaceG/T , twined conjugacy classes for outer automorphisms
turn out to be isomorphic toG/T ω0 , whereT ω0 is a subtorus of the maximal torusT . For in-
stance, forg = sl(3) the dimension of regular conjugacy classes is dim(G/T ) = 8−2 = 6,
while for outer automorphisms twined conjugacy classes have dimension dim(G/T ω0 ) =
8 − 1 = 7. The increase in the dimension actually generalizes a well-known effect in
free conformal field theories, where all automorphisms are outer, to the non-abelian case.
Namely, in a flatd-dimensional background the relevant automorphism, which is an ele-
ment of O(d), determines the dimension of the brane and a constant field strength on it. In
particular, non-trivial automorphisms can change the dimension of the brane.

The boundary statesBωα for symmetry breaking boundary conditions of automorphism
typeω are built fromtwisted boundary blocksBωλ [8]. For the latter, the Ward identities
(2.2) get generalized to

Bωλ ◦ (J an ⊗ 1 + 1 ⊗ ω(J a−n)) = 0. (4.2)

To proceed, we need some further information on automorphisms ofḡ that preserve the com-
pact real form. Such automorphisms are in one-to-one correspondence to automorphisms
of the connected and simply connected compact real Lie groupG whose Lie algebra is the
compact real form of̄g. For each such automorphismω there is a maximal torusT ofG that
is invariant underω. The complexificationt of the Lie algebra ofT is a Cartan subalgebra
of ḡ. The torusT is not necessarily pointwise fixed underω. The subgroup

T ω := {t ∈ T |ω(t) = t} (4.3)

of T that is left pointwise fixed underω can have several connected components [19,20].
The connected component of the identity will be denoted byT ω0 .

The automorphismω of ḡ can be written as the composition of an inner automorphism,
given by the adjoint action Ads of some elements ∈ T , with a diagram automorphismω◦:
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ω(g) = ω◦(sgs−1); (4.4)

without loss of generality,s can be chosen to be invariant underω,ω(s) = s. Let us recall
the definition of adiagram automorphism. Any symmetryω̇◦ of the Dynkin diagram of̄g
induces a permutation of the root generatorsEi± that correspond to the simple roots ofḡ
with respect to the Cartan subalgebrat, according to

Ei± 7→ ω◦(Ei±) := E
ω̇◦i± . (4.5)

This extends uniquely to an automorphismω◦ of g that preserves the compact real form and
is called a diagram automorphism ofḡ. Whenω is an inner automorphism then the diagram
automorphism in the decomposition (4.4) is the identity; in general,ω◦ accounts for the
outer part ofω. Also note that, for inner automorphisms,T ω is the full maximal torusT .

As ω leaves a Cartan subalgebrat invariant, there is an associated dual mapω? on the
weight spacet? of ḡ. Applying the condition (4.2) for the zero modes, i.e.n = 0, one
sees that non-zero twisted boundary blocks only exist forsymmetric weights, i.e. weights
λ satisfyingω?(λ) = λ. Note that relation (4.4) implies thatω?(λ) = ω?◦(λ), so that in the
case of inner automorphisms all integrable highest weightsλ contribute.

Next, we explain what the coefficients in the expansion of the symmetry breaking bound-
ary states with respect to the twisted boundary blocks are, i.e. what the correct generalization
of the numbersSλ,α/SΩ,α appearing in formula (2.4) is. We have seen in (2.5) that forω =
id, these coefficients are given by the charactersχλ of G, evaluated at specific elements
(2.7) of the maximal torusT . For generalω, the analogous numbers have been determined
in [21]. For the present purposes it is most convenient to express them as so-calledtwining
characters[22,23], evaluated at specific elementshα of T .

Let us explain what a twining character is. To any automorphismω of ḡwe can associate
twisted intertwinersΘω, that is, linear maps

Θω : H̄λ → H̄ω?λ (4.6)

between̄g-modules that obey the twisted intertwining property

Θω ◦ Rλ(x) = Rω?λ(ω(x)) ◦Θω (4.7)

for all x ∈ ḡ. By Schur’s lemma, the twisted intertwiners are unique up to a scalar. For
symmetric weights,ω?(λ) = λ, the twisted intertwinerΘω is an endomorphism. In this case
we fix the normalization ofΘω by requiring thatΘω acts as the identity on the highest weight
vector. For symmetric weights, the twining characterχωλ is now defined as the generalized
character-valued index

χωλ (h) := trH̄λ
ΘωRλ(h). (4.8)

Character formulae for twining characters of arbitrary (generalized) Kac–Moody algebras
have been established in [22,23].

Finally, we describe at which group elementsg ∈ G the twining character must be
evaluated in order to yield the coefficients of the boundary state. The integralḡ-weights
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form a latticeLw consisting of all elements oft? of the form λ = ∑rankḡ
i=1 λiΛ(i) that

obey λi ∈ Z for all i. Both the Weyl groupW and the automorphismω? act on this
lattice. We will also need a latticeMw

ω that contains the latticeLw
ω of integral symmetric

ḡ-weights, i.e. of integral weights satisfyingω?(λ) = λ or, equivalently,λω̇◦i = λi for
all i = 1,2, . . . , rankḡ. The latticeMw

ω consists of symmetric̄g-weights as well, but we
weaken the integrality requirement by imposing only thatNiλ

i ∈ Z for all i. HereNi
denotes the length of the corresponding orbit of the Dynkin diagram symmetryω̇◦. For
brevity we call this latticeMw

ω the lattice offractional symmetric weights. By construction,
the latticeMw

ω is already determined uniquely by the outer automorphism class ofω. In
particular, whenω is inner, then bothMw

ω and the symmetric weight latticeLw
ω just coincide

with the ordinary weight latticeLw.
The latticeLw of integral weights of̄g has as a sublattice the latticeL∨ of integral linear

combinations

β =
rankḡ∑
i=1

βiα
(i)∨ (4.9)

of simple corootsα(i)∨. In analogy to what we did before for weights, we also introduce
another latticeM∨

ω , the lattice offractional symmetric coroots, by requiring thatω?(β) = β

andNiβi ∈ Z for all i. We have the inclusionsL∨
ω ⊆ M∨

ω andLw
ω ⊆ Mw

ω .
On both the latticeMw

ω of fractional symmetric weights and the latticeM∨
ω of fractional

symmetric coroots, we have an action of a natural subgroupWω of the Weyl groupW ,
namely of the commutant

Wω := {w ∈ W |wω? = ω?w}. (4.10)

The groupWω depends only on the diagram partω◦ of ω; in particular, for inner auto-
morphisms,ω? is the identity and henceWω = W . For outer automorphisms,Wω can be
described explicitly [23] as follows. For the outer automorphisms ofA2n,Wω is isomorphic
to the Weyl group ofCn; for A2n+1 to the Weyl group ofBn+1; for Dn to the one ofCn−1;
and forE6 to the Weyl group ofF4. Finally, for the diagram automorphism of order three
of D4 one obtains the Weyl group ofG2. (This whole structure allows for a generalization
to arbitrary Kac–Moody algebras, and the commutant of the Weyl group can be shown to
be the Weyl group of some other Kac–Moody algebra, the so-called orbit Lie algebra [22].)
The groupWω also acts on the fixed subgroupT ω of the maximal torusT . One can show
that the twining characters (4.8) are invariant under the action ofWω, which generalizes
the invariance of ordinary characters under the full Weyl groupW .

To characterize the symmetry breaking boundary conditions, we now choose some frac-
tional symmetric weightα ∈ Mw

ω . It is not hard to see that the group element

hα := exp(2π iyα), (4.11)

whereyα is the corresponding dual element in the Cartan subalgebra, i.e.yα := (α+ρ)/(k+
g∨), depends onα only modulo fractional symmetric coroots. Moreover, the subgroupWω

of the Weyl groupW acts freely on the set of allhα; there are as many different orbits as
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there are symmetric integrable weights. Accordingly, we should actually regard the labelα

of a boundary condition of automorphism typeω as an element

α ∈ Mw
ω /(W

ω
n (k + g∨)M∨

ω ). (4.12)

A boundary condition is then uniquely characterized by an element of this finite set. Lettingα

run over this set, we obtain all conformally invariant boundary conditions of automorphism
typeω.

Let us list a few other properties of the group elementhα. It is an element of the fixed
subgroupT ω of the maximal torus, or more precisely, of the connected componentT ω0 of
the identity ofT ω. Moreover, it is a regular element ofG.

Furthermore, it should be mentioned that in the special case of outer automorphisms of
ḡ = A2n, there is an additional subtlety in the description of the twined conjugacy classes. It
arises from the fact [21] that in this case the extension of the diagram automorphism ofḡ to
the affine Lie algebrag does not exactly give the diagram automorphism ofg. The additional
inner automorphism ofg is taken into account by the adjoint action of an appropriate element
s◦ of the maximal torus. Namely, denote byx◦ the dual of the weight14(Λ(n) + Λ(n+1)),
i.e. the Cartan subalgebra element such that(x◦, x) = 1

4(Λ(n) + Λ(n+1))(x) for all x in
the Cartan Subalgebra ofḡ. Then, for outer automorphisms ofA2n, formula (4.11) must be
generalized to

hα := exp(2π iyα)exp(2π ix◦). (4.13)

We are now finally in a position to write down the boundary states explicitly; we have

Bωα =
∑
λ∈Pωk

χωλ (hα)B
ω
λ (4.14)

with Pωk the set of symmetric weights inPk. For trivial automorphism type,ω = id, we
recover formula (2.4).

Fortunately, all the group theoretical tools that we used in the previous sections have
generalizations to the case of twining characters (for details see Appendix B). Therefore,
once we have expressed the boundary states in the form (4.14), we are also able to generalize
the statements of Sections 2 and 3 to the case of symmetry breaking boundary conditions.
For instance, recall that ordinary characters are class functions,

χλ(ghg−1) = χλ(h), (4.15)

i.e. they are constant on conjugacy classesCG (2.10). Combining the cyclic invariance of
the trace and the twisted intertwining property (4.7) of the mapsΘω, one learns that twining
characters aretwined class functionsin the sense that

χωλ (ghω(g)−1) = χωλ (h). (4.16)

As a consequence, thetwined conjugacy classes

CωG(h) := {ghω(g)−1|g ∈ G} (4.17)
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and thetwined adjoint action

Adωg : h 7→ ghω(g)−1 (4.18)

(i.e. the twined version of the adjoint action Adg of g ∈ G) will play exactly the roles
for symmetry breaking boundary conditions that ordinary conjugacy classesCG(h) and
ordinary adjoint action Adg play in the case of symmetry preserving boundary conditions.
We refrain from presenting details of the calculations; for some hints and for the necessary
group theoretical tools, such as a twined version of Weyl’s integration formula, we refer to
Appendix B.

We summarize a few properties of twined conjugacy classes (for details see Appendix
B). Every group elementg ∈ G can be mapped by a suitable twined adjoint map toT ω0 .
For regular elementsh ∈ G, the twined conjugacy class is isomorphic, as a manifold with
G-action, to the homogeneous space

CωG(h)
∼= G/T ω0 . (4.19)

For outer automorphisms, the following intuition appears to be accurate. The twined
conjugacy classes are submanifolds ofG of higher dimension. To characterize them by
the intersection7 with elements of the maximal torus, it is therefore sufficient to restrict
to the symmetric partT ω of the maximal torus (and even to the connected componentT ω0
of it). In contrast, for an inner automorphismω = Ads with s ∈ G, the twined conjugacy
classes have the same shape as ordinary conjugacy classes; indeed, they are just obtained
by right-translation of ordinary conjugacy classes:

CAds
G (h) = CG(hs) s−1. (4.20)

The twined analog of the formula (3.17) requires only the symmetric part of the weight
to vanish (because in the twined analog of (A.6) only equality of the symmetric parts of the
weights is enforced by the integration). As a consequence, at fixed automorphism typeω

the large level limit (3.20) of the boundary operators gets replaced by

lim
k→∞

Fωk
∼= ⊕
λ∈P

mult(λ)0,ωH̄λ, (4.21)

where mult(λ)0,ω stands for the sum of the dimensions of all weight spaces ofH̄λ for weights
whose symmetric part vanishes. The limit limk→∞Fωk again yields the algebra of func-
tions on the brane world volume which in this case is isomorphic, as a manifold, to the
homogeneous spaceG/T ω0 .

7 One word of warning is, however, in order. The orbits of twined conjugation intersectT ω0 in several points, but,
in contrast to the standard group theoretical situation, the intersections are not necessarily related by the action of
Wω. Rather, a certain extensionW(T ω0 ) of Wω, to be described in Appendix B, is needed [19,20].
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5. Non-simply connected group manifolds

In this section we extend the results of the previous two sections to Lie group manifolds
G that are not simply connected. Before we present our results in more detail, we briefly
outline them for the groupG = SO(3). As is well-known, SO(3) is obtained as the quotient
of the simply connected group SU(2) by its centerZ2. We will see that to every symmetry
preserving boundary condition for SO(3) we can again associate a conjugacy class of SO(3).
The latter are projections of orbits of conjugacy classes of the covering group SU(2) under
the action of the centerZ2. Thinking of the group manifold SU(2) as the three-sphere
S3 with the north pole being the identity element+1 and the south pole the non-trivial
element−1 of the center, the action of the center is the antipodal map onS3. The conjugacy
classes that are related by the center are then those having the same ‘latitude’ onS3.
Those conjugacy classes which describe boundary conditions must obey the same integrality
constraints as in the SU(2) theory. Explicitly, at levelk the two SU(2) conjugacy classes
(λ+ρ)/(k+g∨) and(k−λ+ρ)/(k+g∨) give rise to a single boundary condition for SO(3).
An additional complication arises for the ‘equatorial’ conjugacy classλ = k/2, which is
invariant under the action of the center; it gives rise to two distinct boundary conditions.
Also note that all automorphisms of SO(3) are inner, and thus in one-to-one correspondence
with automorphisms of SU(2). Symmetry breaking boundary conditions of SO(3) therefore
correspond to tilted SO(3) conjugacy classes.

This picture is reminiscent of the phenomena one encounters in orbifold theories, and
indeed the WZW theory based on the group SO(3) can be understood [24,25] as an orbifold
of the SU(2) WZW theory. Branes of the orbifold theory correspond to symmetric brane
configurations in the covering space; branes at fixed point sets give rise to several distinct
boundary conditions, known as ‘fractional branes’ [26]. We point out, however, the following
additional feature that is revealed by our analysis. Namely, in case the orbifold group admits
non-trivial two-cocycles, branes at fixed point sets do not necessarily split. To what extent
a splitting occurs is controlled by the cohomology class of the relevant two-cocycles.

Let us now describe our results more explicitly. For the time being, we restrict our attention
to boundary conditions that preserve all bulk symmetries. The compact connected simple
Lie groupG can be written as the quotient of a simply connected, compact and connected
universal covering group̃G by an appropriate subgroup0 of the center ofG̃. There is a
natural projection

π : G̃ → G (5.1)

whose kernel is the finite group0. As a consequence, the WZW theory based onG can
be seen as an ‘orbifold’ of the theory based onG̃. (It should be pointed out, however, that
the term ‘orbifold’ is used in this context in a broader sense than is commonly done in the
representation theoretic formulation of orbifolds in conformal filed theory, compare e.g. to
[27].)

It is known [24,25] that the WZW theory on a non-simply connected group manifold
is described by a non-diagonal modular invariant that can be constructed with the help
of simple currents. The relevant simple currents are in one-to-one correspondence with



G. Felder et al. / Journal of Geometry and Physics 34 (2000) 162–190 183

the elements of the subgroup0 of the center ofG̃. In the most general situation, the
non-diagonal modular invariant in question is obtained by applying a so-called simple
current automorphism to a chiral conformal field theory that is itself constructed from the
original diagonal theory by a simple current extension [28]. For the sake of simplicity, in the
sequel we will discuss only such conformally invariant boundary conditions for which only
one of the two mechanisms, i.e. either a simple current automorphism or a simple current
extension, is present. For̃G = SU(2), bothcases correspond to the non-simply connected
quotient SO(3) = SU(2)/Z2; the former arises for levels of the formk = 2 mod 4Z,
where one deals with a modular invariant ofDodd-type, while the latter appears for levels
k = 0 mod 4Z and corresponds to a modular invariant ofDeven-type.

We first consider simple current extensions. We can then invoke the general result that
boundary conditions preserving all bulk symmetries are labeled by the primary fields of
the relevant conformal field theory, which is now not the WZW theory corresponding to
G̃, but the conformal field theory that is obtained from it by the simple current extension.
This extended theory can be described as follows [29]. Its primary fields correspond to
certain orbits of the action of0 on the primary fields of the unextended theory. But only a
certain subset of orbits is allowed, e.g. forG = SO(3) only those that correspond to integer
spin highest weights. We will see later, however, that the other orbits describe conformally
invariant boundary conditions as well. Those boundary conditions do not preserve all sym-
metries of the extended chiral algebra, but they still preserve all symmetries of the chiral
algebra for theG̃-theory.

We also must account for the fact that the action of0 on the set of orbits is not necessarily
free.8 When it is not free, then there are several distinct primary fields associated to the same
orbit. For determining the number of primaries coming from such an orbit, one must take
into account the fact that the action of the simple current group is in general only projective;
an algorithm for solving this problem has been developed in [29]. We summarize these
findings in the statement that the boundary conditions of the WZW theory based onG

correspond to orbits of conjugacy classes ofG̃ under the action of0, with multiplicities
when this action is not free.

Next, we study the case of automorphism modular invariants. For this situation the bound-
ary conditions that preserve all bulk symmetries have been found in [12] forG̃ = SU(2) and
in [10] for the general case. They are labeled by orbits of the action of0 on primary fields,
or, equivalently, on conjugacy classes. Again, when this action is not free, then there are
several inequivalent boundary conditions associated to the same orbit. On disks with bound-
ary conditions that come from the same orbit, bulk fields in the untwisted sector possess
identical one-point functions, but the one-point functions of bulk fields in the twisted sector
are different for different boundary conditions of this type. They differ in sign, and the ab-
solute values are controlled by the matricesSJ that describe the modular S-transformation
of one-point chiral blocks on the torus with insertion of the relevant simple currentsJ [10].

8 While the (left or right) action of0 on individual group elements is obviously free, the action on conjugacy
classes can be non-free, sinceh andεh with ε ∈ 0 can belong to the same conjugacy class.
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To provide a geometrical interpretation of these results, we first relate conjugacy classes
of the groupG to conjugacy classes of its covering groupG̃. The conjugacy classCG(h)
of an elementh ∈ G in the non-simply connected groupG can be written as the image
under the mapπ (5.1) of several conjugacy classesC

G̃
of the universal covering group̃G.

We claim that

π−1(CG(h)) =
⋃
ε∈0
C
G̃
(εh̃), (5.2)

whereh̃ ∈ G̃ is any a lift ofh, i.e.π(h̃) = h. To see that the set on the right-hand side of
(5.2) is contained in the set on the left-hand side, we note that its elements are of the form
g̃εh̃g̃−1 for someg̃ ∈ G̃ and someε ∈ 0. Further, we have

π(g̃εh̃g̃−1) = π(g̃)π(h̃)π(g̃−1) = ghg−1, (5.3)

whereg is the projectionπ(g̃); sinceghg−1 lies in CG(h), indeedg̃εh̃g̃−1 is contained in
the left-hand side of (5.2). Conversely, assume thath′ ∈ G is conjugate toh ∈ G, which
means thatghg−1 = h′ for someg ∈ G. There exists ãg ∈ G̃ such thatπ(g̃) = g,
and every element ofπ−1(ghg−1) is of the form(ε1g̃)(ε2h̃)(ε3g̃−1) for suitable elements
ε1, ε2, ε3 ∈ 0. Using that theεi are central inG̃, this means thatπ−1(h′) lies in the set on
the right-hand side of (5.2).

Let us now consider those conjugacy classes which are left invariant by some subgroup
0′ of 0. (For example, the group manifold̃G = SU(2) is a three-sphereS3 and the regular
conjugacy classes are isomorphic to spheresS2 of fixed latitude; thus there is a single
conjugacy class that is fixed by the action of the centerZ2 of G̃, namely the equatorial
conjugacy class. At levelk, it corresponds to the weightµ = k/2 that is a fixed point
with respect to fusion with the non-trivial simple current of thesl(2) WZW theory.) The
finite subgroup0′ acts freely on such an invariant conjugacy classC◦. Therefore, the space
F(C◦) of functions onC◦ can be decomposed into eigenspaces under the action of0′. In the
simplest case, the subspaces just consist of odd and even functions, respectively. In general,
the decomposition reads

F(C◦) = ⊕
ψ∈0′?

Fψ(C◦), (5.4)

where the eigenvaluesψ are given by characters of0′.
It follows that the boundary conditions for non-simply connected groupsG can be de-

scribed by conjugacy classes ofG itself, with the important subtlety that those conjugacy
classes which are invariant under the action of the group0 give rise to several distinct
boundary conditions. Our analysis reproduces, in particular, the following familiar features
of D-branes on orbifold spaces. Brane configurations on the original spaceG̃ that are sym-
metric under the action of0 give rise to boundary conditions in the quotientG. Individual
branes that are invariant under a subgroup0′ of the orbifold group0 yield several boundary
conditions which differ in the contribution from the twisted sector; the coefficients in their
boundary states are reduced by a common factor, which is precisely the effect of fractional
branes [26].
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We can also describe the analog of the decomposition (5.4) of functions on invariant
branes for boundary operators. Again, we discuss simple current extensions and automor-
phisms separately. In the case of automorphisms, it was shown in [10] that the annulus
multiplicities are given by the rank of the sub-vector bundle of chiral blocks with definite
parity under the simple current automorphism. In the case of simple current extensions, the
annulus multiplicities are, according to [4], fusion rules of theG̃-theory. Moreover, general
results [29] on the fusion rules of a simple current extension show that the fusion rules of
the extended theory —that is, in our case, of theG-theory —are given by sub-bundles of
definite parity as well. Just like for simply connected groups, our analysis therefore con-
firms the general idea that the algebra of boundary operators should be a quantization of
the algebra of functions on the brane world volume.

We also would like to point out one important subtlety in the analysis of invariant orbits.
The exact analysis [7] reveals that not all invariant orbits necessarily split off and give rise
to several boundary conditions. Rather, it can happen that the action of the stabilizer of
the orbifold group in the underlying orbifold construction is only projective, and in this
case even an invariant conjugacy class can give rise to only a single boundary condition. An
example is given bỹG = Spin(8)/Z2×Z2; at level 2, there is a single conjugacy class that is
fixed under0, and yet, due to the appearance of a genuineuntwisted stabilizer[29], it gives
rise to a single conformally invariant boundary condition. For more details, refer to [8].

We proceed to briefly discussing some aspects of symmetry breaking boundary conditions
for WZW theories on non-simply connected group manifolds. We first discuss which auto-
morphisms can be used. While every automorphism ofḡ that preserves the compact real form
gives rise to an automorphism of the universal covering groupG̃, such automorphisms do
not necessarily descend to the quotient groupG. Rather, every automorphism ofG̃ restricts
to an automorphism of the centerZ(G̃) of G̃; for an inner automorphism this restriction
is the identity. The automorphisms ofG̃ that descend to automorphisms ofG = G̃/0 are
precisely those that map0 to itself. Notice that the group ofinnerautomorphisms of̃G and
G coincide; in both cases this group is equal to the adjoint groupG̃/Z(G̃) ∼= G/Z(G).
The symmetry breaking boundary conditions for non-simply connected group manifolds
that come from automorphisms are therefore related to twined conjugacy classes ofG in
much the same way as in the simply connected case, with the same subtleties arising for
twined conjugacy classes that are left invariant by some element of the center.

We finally remark that in the case of extensions, such as those forA1 at levelk = 0 mod 4,
another type of symmetry breaking boundary condition exists for theG-theory, namely
boundary conditions which only preserve the symmetries of the unextended theory, i.e.
of the G̃-theory. These come from automorphisms of the extended chiral algebra that act
as the identity on the unextended one. It has been demonstrated [7] that such boundary
conditions are labeled bỹG-primaries as well. As already mentioned, they correspond
to those0-orbits of conjugacy classes of̃G that are projected out in thẽG theory. For
G = SO(3), for instance, they are obtained by projection from conjugacy classes ofSU(2)
that are related to half-integer spin highest weights. We can therefore describe also this type
of boundary conditions by orbits of̃G-conjugacy classes which by (5.2) project, in turn, to
G-conjugacy classes.



186 G. Felder et al. / Journal of Geometry and Physics 34 (2000) 162–190

Acknowledgements

We would like to thank A. Lerda, K. Gaw¸edzki, O. Grandjean and B. Pedrini for stimu-
lating discussions.

Appendix A. Fusion rules

In this appendix we derive the relation (3.14) between fusion rule coefficients and weight
space multiplicities. We start with the observation that a character can, on one hand, be
written in terms of weight multiplicities

χλ(h) =
∑
µ

m(λ)µ eµ(h), (A.1)

and on the other hand can be expressed in terms of Weyl’s character formula as

χλ(h) = X−1(h)
∑
w∈W

ε(w)ew(λ+ρ)(h). (A.2)

Here the sum is over the Weyl groupW of ḡ, ε is the sign function onW , and

X(h) := eρ(h)
∏
α>0

(1 − e−α(h)) (A.3)

is the well-known expression for the denominator. (Up to an exponential eλ+ρ ,X−1 is just
the character of the corresponding Verma module of highest weightλ.)

Next we recall the Kac–Walton formula [30–33] for WZW fusion rules. It expresses the
fusion coefficientsNµνλ as an alternating sum over a certain subsetW

◦
of the affine Weyl

groupŴ .W
◦

consists by definition of those elements ofŴ that map the fundamental Weyl
alcove to some alcove in the fundamental Weyl chamber. The setW

◦
furnishes a distinguished

set of representatives for the cosetŴ/W , butW
◦

is not a group. The representatives can be
characterized by the fact that they have minimal length. The Kac–Walton rule yields

Nµν+λ =
∑
w
◦∈W

◦
ε(w

◦
)L
w
◦
(µ+ρ)−ρ,ν+,λ, (A.4)

whereL
w
◦
(µ) ν+ λ is the dimension of the space of singlets in the tensor productH̄

w
◦
(µ)

⊗
H̄ν+ ⊗ H̄λ of the threeḡ-modulesH̄

w
◦
(µ)

, H̄ν+ andH̄λ. This dimension, in turn, can be

expressed in terms of an integral over the corresponding characters as

L
w
◦
(µ+ρ)−ρ,ν+,λ =

∫
G

dg χ
w
◦
(µ+ρ)−ρ(g) χν+(g) χλ(g)

= 1

|W |
∫
T

dh J (h) χ
w
◦
(µ+ρ)−ρ(h) χν+(h) χλ(h), (A.5)

where in the second line we have used Weyl’s integral formula to reduce the integral to an
integral over a maximal torusT of G.
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The next step is to insert the formula (A.5) into the Kac–Walton rule (A.4) and to recom-
bine the summations overW andW

◦
. At the same time, we use the Weyl character formula

to rewrite the charactersχ
w
◦
(µ+ρ)−ρ andχν+ , while the third character is expressed in terms

of weight multiplicities. We then arrive at

Nµν+λ = 1

|W |
∫
T

dh
∑
w
◦∈W

◦
ε(w

◦
)J (h) χ

w
◦
(µ+ρ)−ρ(h) χν+(h) χλ(h)

= 1

|W |
∑

w1,w2∈W
ε(w1)ε(w2)

∑
β∈L∨

∫
T

dhew1(µ+ρ)−w2(ν+ρ)+(k+g∨)β(h) χλ(h)

= 1

|W |
∑

w1,w2∈W
ε(w1)ε(w2)

×
∑
σ

∑
β∈L∨

∫
T

dhew1(µ+ρ)−w2(ν+ρ)+(k+g∨)β(h)mult(λ)σ eσ (h)

= 1

|W |
∑

w1,w2∈W
ε(w1)ε(w2)

∑
β∈L∨

mult(λ)−w1(µ+ρ)+w2(ν+ρ)−(k+g∨)β , (A.6)

so that we have finally arrived at the relation (3.14). Here in the second line we have also
used the following two simple relations. First, the characters of two conjugate modules are
related as

χλ+(h) = χλ(h
−1). (A.7)

Second, the Jacobian factorJ in Weyl’s integration formula can be expressed in terms of
X as

J (h) = X(h)X(h−1). (A.8)

Together they allow us to cancel the two Weyl denominators against the volume factorJ .
Theσ -summation in the third line of (A.6) is over the weight system ofH̄λ, and in the last
line the integral over the maximal torusT was evaluated explicitly.

Appendix B. Twined conjugation

To investigate the properties of the twined conjugation (4.18), it turns out to be helpful to
relate it to the theory of non-connected Lie groups. The non-connected Lie groups for which
the connected component of the identity is isomorphic to a given real, compact, connected
and simply connected Lie groupG can be related to subgroups of the group of automor-
phisms of the Dynkin diagram of the Lie algebraḡ whose compact real form is the Lie
algebra of the groupG. (This should not be confused with the relation between non-simply
connected groups and automorphisms of theextendedDynkin diagram.) Namely, for every
subgroup̌0 of diagram automorphisms ofḡ, one can construct a Lie group̌Gwith the group
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of connected components given byπ0(Ǧ) = 0̌ as the semi-direct product of the Lie group
G and the finite group̌0. Conversely, ifg is any element of a Lie group̌G that is not in
the connected component of the identity, then the adjoint action ofg on the Lie algebra
ḡ is given by anouterautomorphismωg and therefore corresponds to a symmetry of the
Dynkin diagramḡ.

The non-trivial connected components ofǦ are, as differentiable manifolds with metric,
isomorphic toG. We fix a connected componentGω̇ that corresponds to the elementω̇ of
the group of Dynkin diagram symmetries ofḡ. The adjoint action of any elementg ∈ G of
the connected component of the identity mapsGω̇ to itself. Taking any arbitrary element
gω̇ ∈ Gω̇, we can write every element inGω̇ ashgω̇ with h ∈ G, and we haveω(g) =
gω̇gg−1

ω̇ . For the adjoint action ofg ∈ G we then find

Adg(hgω̇) = ghω(g)−1 gω̇ = Adωg (h) gω̇ (B.1)

with ω ≡ ωgω̇ . We see that, after choosing an origingω̇ for Gω̇, ordinary conjugation by
g ∈ G acts onh like twined conjugation. Changing the origingω̇ changes the relevant
automorphism by an inner automorphism.

Now denote by

Nω(T ω0 ) := {g ∈ G|gtω(g)−1 ∈ T ω0 for all t ∈ T ω0 } (B.2)

thetwined normalizerof the connected componentT ω0 in the fixed subgroup of the maximal
torusT . The quotient

W(T ω0 ) := N(T ω0 )/T
ω
0 (B.3)

is called the Weyl group ofT ω0 . It can be shown [19,20] thatW(T ω0 ) is the product of
the subgroupWω of the Weyl group that was defined in (4.10) and a finite abelian group
0(G,ω). Moreover, the mapping degree of the mapping

qω : G/T ω0 × T ω0 → G

(gT ω0 , t) 7→ gtω(g)−1 (B.4)

is [19,20] degqω = |W(T ω0 )|. In particular, the mapping degree is positive, soqω is surjec-
tive. This, in turn, implies that any group element ofG can be mapped suitably by a twined
conjugation (4.18) intoT ω0 , which generalizes the well-known conjugation theorems for
the maximal torus.

The determinant ofqω can be computed. One finds at the point(1, h) with h ∈ T ω0

detqω = |0(G,ω)|
∣∣∣∣∣∣
∏
α̌>0

(
1 − e2π iα̌(h)

)∣∣∣∣∣∣
2

=: |0(G,ω)| · Jω(h), (B.5)

where the product is over a set of weights that are constructed fromω?-orbits of positive
ḡ-roots and which can be shown [22] to be isomorphic to the set of positive roots of the
so-called orbit Lie algebra that is associated toḡ andω. (Recall thatWω is isomorphic to
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the Weyl group of the orbit Lie algebra .) Application of Fubini’s theorem then yields the
twined generalization

∫
G

dg f (g) = 1

|Wω|
∫
T ω0

dh Jω(h)

(∫
G/T ω0

d(gTω0 ) f (gtω(g)−1)

)
(B.6)

of Weyl’s integration formula. Here dg, dh and d(gTω0 ) are the Haar measures on the
Lie groupsG andT ω0 and on the homogeneous spaceG/T ω0 , respectively. Obviously, the
integration formula is particularly useful for twined class functionsχω (see (4.16)), for
which it reduces to∫

G

dg χω(g) = 1

|Wω|
∫
T ω0

dh Jω(h)χω(h). (B.7)
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