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Abstract

The structures in target space geometry that correspond to conformally invariant boundary con-
ditions in WZW theories are determined both by studying the scattering of closed string states and
by investigating the algebra of open string vertex operators. In the limit of large level, we find branes
whose world volume is a regular conjugacy class or, in the case of symmetry breaking boundary
conditions, a ‘twined’ version thereof. In particular, in this limit one recovers the commutative
algebra of functions over the brane world volume, and open strings connecting different branes
disappear. At finite level, the branes get smeared out, yet their approximate localization at (twined)
conjugacy classes can be detected unambiguously.

It is also established that in any rational conformal field theory the structure constants of the
algebra of boundary operators coincide with specific entries of fusing matrices. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Conformally invariant boundary conditions in two-dimensional conformal field theories
have recently attracted renewed attention. By now, quite a lot of information on such bound-
ary conditions is available in the algebraic approach, including boundary conditions that do
not preserve all bulk symmetries. In many cases, the conformal field theory of interest has
also a description as a sigma model with target spdcdt is then tempting to ask what
the geometrical interpretation of these boundary conditions might be in terms of submani-
folds (and vector bundles on them or, more generally, sheavas) Attually, this question
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makes an implicit assumption that is not really justified: It is not the classical (commutative)
geometry of the targe¥ that matters, but rather a non-commutative version [1] of it.

In the present note, we investigate the special case of WZW conformal field theories. For
most of the time we restrict our attention to the case where the torus partition functionis given
by charge conjugation. Then the classical target space is a real simple compact connected
and simply connected Lie group manifotd. In particular, the underlying manifold is
parallelizable, i.e. its tangent bundle is a trivial bundle.

The latter property of Lie groups will allow us to apply methods that were developedin [2],
by which geometric features of the D-brane solutions of supergravity in flat 10-dimensional
space—time were recovered from the boundary state for a free conformal field theory. The
basic idea of that approach was to compute the vacuum expectation valuebafitfield
that corresponds to tt@osedstring state

a1a’lg) ® 19) (1.1)

on a disk with a boundary conditighof interest. Here our convention is that quantities with-

out a tilde correspond to left-movers, while those with a tilde correspond to right-movers.
The operatow); is thenth mode of thai(1) current in theu-direction of the free conformal

field theory. The symmetric traceless part of the state (1.1) corresponds to the graviton, the
antisymmetric part of the state to the Kalb—Ramond field, and the trace to the dilaton, all
of momentuny.

Let us explain the rationale behind this prescription. At first sight it might seem more nat-
ural to employ graviton scattering in the background of a brane for exploring the geometry.
This would correspond, in leading order of string perturbation theory, to the calculation of
a two-point correlation function for two bulk fields on the disk. However, by factorization
of bulk fields such an amplitude is related to (a sum of) products of three-point functions on
the sphere with one-point functions on the disk. Since the former amplitude is completely
independent of the boundary conditions, all information on a boundary condition that can
be obtained by use dfulk fields will therefore be obtainable from correlators involving a
single bulk field. Similar factorization arguments also encourage us to concentrate on world
sheets with the topology of a disk.

The idea of testing boundary conditions with vacuum expectation values of bulk fields
finds an additional justification in the following reasoning. In terms of classical geometry,
boundary conditions are related to vector bundles over submanifolds of the target manifold
M, the Chan—Paton bundles. Such bundles, in turn, should be regarded as modules over the
ring F(M) of functions onM. Heuristically, we may interpret the algebra of (certain) bulk
fields as a quantized version &fM). The expectation values of the bulk fields on a disk
then describe how the algebra of bulk fields is represented on the boundary operators or,
more precisely, on the subspace of boundary operators that are descendants of the vacuum
field. (As a side remark we mention that boundary conditions are indeed most conveniently
described in terms of suitabtdassifying algebrasThese encode aspects of the action of
the algebra of bulk operators on boundary operators.)

The relevant information for computing the one-point functions on a disk with boundary
conditiong is encoded in &oundary statd8s, which is a linear functional,
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Bg: ®@H,@H; - C (1.2)
4.9

onthe space of closed string states. (For an uncompactified free boson, the left-and right-moving
labels of the primary fields are relatedias- ¢.) We are thus led to compute the function

Gy (q) = Bpa"1a" 119) ® 14)). 1.3

Using the explicit form of the boundary state, this quantity has been determined in [2].
Upon Fourier transformation, it gives rise to a functiﬁg”(x) on position space. It has
been shown that the symmetric traceless part of the fundigmeproduces the vacuum
expectation value of the graviton in the background of a brane, while the antisymmetric
part gives the Kalb—Ramond field, and the trace the dilaton.

In order to see how these findings generalize to the case of (non-abelian) WZW theories,
let us examine the structural ingredients that enter in these calculations. Boundary states
can be constructed for arbitrary conformal field theories, in particular for WZW models.
Moreover, since group manifolds are parallelizable, it is also straightforward to generalize
the oscillator modeg" ,: they are to be replaced by the corresponding maokfesf the
non-abelian current$®(z). Here the upper index ranges over a basis of the Lie algebra

of G,a=1,2,...,dimG, andn € Z. Together with a central elemekt, these modes
span an untwisted affine Lie algelyyaaccording to
[Je, g0 = Z FEPTE L+ K8yt 0. (1.4)
c

Here £9> and«“? are the structure constants and Killing form, respectively, of the finite-
dimensional simple Lie algeb@whose compact real form is the Lie algebra of the Lie
group manifoldG. Notice that the generators of the for§ form a finite-dimensional
subalgebra, called the horizontal subalgebra, which can (and will) be identified.with

We finally need to find the correct generalization of the sigteTo this end we note that
lg) is the vector in the Fock space of chaggavith lowest conformal weight. For WZwW
theories, instead of this Fock space, we have to consider the following space. First, we must
choose a non-negative integer valuer the level, i.e. the eigenvalue of the central element
K. The space of physical states of the WZW theory with charge conjugation modular
invariant is then the direct sum

@ Hi Q@ Hy+, (1.5)
rePy
where#,, is the irreducible integrable highest weight modulgyaft levelk with highest
weighti, andPy is the (finite) set of integrable weightof g at levelk. Every suchy-weight
A corresponds to a unique weight of the horizontal subalggl§vehich we denote again
by A), which is the highest weight of a finite-dimensiofatepresentation. However, for
finite levelk, not all such highest weights @fappear; this truncation will have important
consequences later on.
Unlike in the case of Fock modules, the subspace of states of lowest conformal weight

in the module?, is not one-dimensional any longer. Rather, it constitutes the irreducible
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finite-dimensional modulé{, of the horizontal subalgebi@ Therefore, in place of the
function (1.3) we now consider

G (v ® D) :=Bg(J1 T’ [v) ® D)) (1.6)
for
v@Ue @ HyQH;-. (1.7)
rE Py

As a matter of fact, one may also look at analogous quantities involving other nides
combinations of modes, or even without any mode present at all. It turns out that qualitatively
their behavior is very similar to the functions (1.6); they all signal the presence of a defect
at the same position in target space. Our results are therefore largely independent on the
choice of the bulk field we use to test the geometry of the target.

The functionGg” can be determined from known results about boundary conditions in
WZW models. This allows us to analyze WZW brane geometries via expectation values
of bulk fields. Another approach to these geometries is via the algebra of boundary fields.
While the second setup focuses on intrinsic properties of the brane world volume, the first
perspective offers a natural way to study the embedding of the brane geometry into the
target. Both approaches will be studied in this paper.

We organize our discussion as follows. In Section 2 we compute the furﬁgﬁrﬂor
those boundary conditions which preserve all bulk symmetries. To relate this function to
classical geometry of the group manifald we perform a Fourier transformation. We then
find that the end points of open strings are naturally localized at certain conjugacy classes
of the groupG. At finite levelk, the locus of the end points of the open string is, however,
smeared out, though it is still well peaked at a definite regular rational conjugacy class. The
absence of sharp localization at finite lekeshows that, even after having made the relation
to classical geometry, the brane exhibits some intrinsic ‘fuzziness'. It should, however, be
emphasized that at finite level the very concept of both the target space and the world volume
of a brane as classical finite-dimensional manifolds are not really appropriate.

The algebra of boundary fields for symmetry preserving boundary conditions is analyzed
in Section 3. We show that for any arbitrary rational conformal field theory the boundary
structure constants are equal to world sheet duality matrices, the fusing matrices, according
to

*
ABByC A %
corsmy =<FLUC’A,3+B|:O[+ VD . (L8)

Furthermore, we are able to show that in the limit of lakdlee space of boundary operators
approaches the space of functions on the brane world volume. In the same limit open strings
connecting different conjugacy classes disappear, while such configurations are present at
every finite value of the level.

In Section 4 we discuss symmetry breaking boundary conditions in WZW theories for
which the symmetry breaking is characterized through an automorphdditine horizontal
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subalgebrag.® It turns out that the end points of open strings are then localizediaéd
conjugacy classes.e. at sets of the form

Co(h) := {ghw(g) 1g € G} (1.9)

for someh € G. The derivation of our results on symmetry breaking boundary conditions
requires generalizations of Weyl’s classical results on conjugacy classes. (The necessary
tools, including a twined version of Weyl's integration formula, are collected in Appendix
B.) In Section 5, we extend our analysis to non-simply connected Lie groups. We find fea-
tures that are familiar from the discussion of D-branes on orbifold spaces, such as fractional
branes, and point out additional subtleties in cases where the action of the orbifold group
is only projective.

2. Probing target geometry with bulk fields

We start our discussion with the example of boundary conditions that preserve all bulk
symmetries. In this situation the correlators on a surface with boundaries are specific linear
combinations of the chiral blocks on the Schottky double of the surface [3]. The boundary
state describes the one-point correlators for bulk fields on the disk and accordingly, it is a
linear combination of two-point blocks on the Schottky cover of the disk, i.e. on the sphere.
The latter — which in the present context of correlators on the disk also go under the name
of Ishibashi states — are linear functionals

B, : Hy @ H;+ - C (2.1)
that are characterized by the Ward identities
Byo(Ji®1+1®J%)=0. (2.2)

Choosing an element® i € #, ® #,+, we can use the invariance property (2.2) and the
commutation relations (1.4) to arrive at

B,(J' @I 0) =-B((1® J{I D ® 1) = - B (1[I, P (v ® 1))
==Y fBr(v® J§T) — k’k B, (v ® D). (2.3)

There is one symmetry preserving boundary condition for each primarydi@idhe
theory [4]. The coefficients in the expansion of the boundary states with respect to the
boundary blocks are given by the so-called (generalized) quantum dimensions:

S
By=Y S“ B;. (2.4)
aep DS

Here S is the modular S-matrix of the theory a2l refers to the vacuum primary field.
To write the state (2.4), in a more convenient form, we use the fact that the generalized

1 Not all symmetry breaking boundary conditions of WZW theories are of this form.
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quantum dimensions are given by the values ofgtobaracter of,, at specific elements
v, Of the Cartan subalgebra of the horizontal subalg@hog equivalently, by the values
of the G-character ofH,, at specific elements, of the maximal torus of the groug.
Concretely, we have

Sk,a/SQ,a = xa(ha) (2-5)
with
X (h) =t Ry(h) 2.6)

and

o+ p
k+ gV
for any levelk andg-weighta. In formula (2.7),0 denotes the Weyl vector (i.e. half the

sum of all positive roots) of andg" is the dual Coxeter number. The boundary state thus
reads

By =) x:.(ha)By. (2.8)

reP;

he = exp2riyy) Wwith  y, = 2.7

The functionG% defined in formula (1.6) is then found to be
G (v ® D) = =y (ha) [ Ba(v ® [JG. JE1D) + Kk By (v ® ¥)] (2.9)

forv@ve 7:lx®7:lk+.
We recall that the group characteiis a class function, i.e. a function that is constant on
the conjugacy classes

Co(h) :={ghgtlg € G} (2.10)

of G. Itis therefore quite natural to associate to a symmetry preserving boundary condition
the conjugacy clags; () of the Lie groupG that contains the elemehy,. We would like
to emphasize thdl; (k) is always aegularconjugacy class, i.e. the stabilizerigf under
conjugation is just the unique maximal torus containing this element.

Our next task is to perform the analog of the Fourier transformation bet@éeandG*”
in [2]. To this end we employ the fact that left and right translation on the group manifold
G give two commuting actions off on the spacer(G) of functions onG and thereby
turn this space into &-bimodule. By the Peter—Weyl theoretfi(G) is isomorphic, as a
G-bimodule, to an infinite direct sum of tensor products of irreducible modules, namely

F(G) = @ Hy @ Hy+. (2.11)
rEP

HereP = P.— isthe setofall highest weights of finite-dimensional irreducgsieodules.
We may identify the conjugate modulé; + with the dual of#,. Then the isomorphism
(2.11) sends ® 7 € H; ® H,+ to the functionf on G given by

f(8) = v(Ru(g)v) = (V|Rx(8)]v) (2.12)
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for all g € G. Using the scalar product dfi(G), we can therefore associate to every linear
functionalg : F — C a function (respectively, in general, a distributighpn the group
manifold by the requirement that

B ® D) =/Gdgﬁ<g>*<ﬁ|Rx<g>|v> (2.13)

for v® v € H; ® H,+. After introducing dual basef;} of #, and{7;} of #,+, the
orthonormality relations for representation functions then allow us to write

B(e) =" B ® )" (5| R (g)]vi). (2.14)

AEP i)

According to (1.7), at finite level we have to deal with the finite-dimensional truncations

Fi(G)i= @ Hy QM+ (2.15)
rePy

of the space (2.11) of functions ai. For everyk, the spaceF;(G) can be regarded as

a subspace of-(G). We will do so from now on; thereby we arrive at a picture that is

close to classical intuition. The level-dependent truncation (2.15) constitutes, in fact, one of

the basic features of a WZW conformal field theory. (This is a typical effect in interacting

rational conformal field theories, which does not have an analog for flat backgrounds.)
Next we relate the linear functiaBi®® on F; to a functionG*® on the group manifolds

by the prescription

G(g) ==Y Y G & 1,)* (1| R(8)Iv) (2.16)

AEP i)

for g € G. By direct calculation we find

S* S*
Gg=-Y (x“”k Lty Rig) + ) S trmJCRx(g))
reP 2. c 2.,

==kl a0 ha)* x0(8) = Y X he)* try [T, TR (9). (2.17)
rEPy rEPy

In analogy with the situation for flat backgrounds [2] we are led to the following interpreta-
tion of this result. The first term in the expression (2.17) is symmetric and hence describes
the vacuum expectation value of dilaton and metric that is induced by the presence of the
brane, while the second term, which is antisymmetric, corresponds to the vacuum expecta-
tion value for the Kalb—Ramond field.

To proceed, we introduce, for evekye Z. o, a functiongy on G x G by

er(g, ) =Y (). (2.18)
re Py
In the limit k — oo the integral operator associatedgpreduces to thé-distribution on
the space of conjugacy classes. Indeed, because;of liglP, = P, for every class function
f onG we have
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[ i gete ) £ = 7o) (219)

which is a consequence of the general relation

/Gdg xv (&) xw(g) = dim(Homg (V, W)) (2.20)

valid for any twoG-modulesV, W. Comparison with the result (2.17) thus shows that, in
the limit of infinite level, the brane is localized at the conjugacy clas8:,) of G. Itis
worth emphasizing, however, that this holds true only in that limit. In contrast, at finite level,
the brane world volume irot sharply localized on the relevant conjugacy clégsh,,).
Rather, it gets smeared out or, in more fancy terms, its localization is on a ‘fuzzy’ version of
a conjugacy class. Nevertheless, already at very small level the localization is sufficiently
sharp to indicate unambiguously what remains in the limit.

For concreteness, we display a few examples for boundary conditiong witi(2) in
Fig. 1. The functions of interest are

2

fea(h) =N TR | D x0(ha) x2(h)| (2.21)

rE Py

whereJ is the weight factor in the Weyl integration formula (see (A.3) and (A.8))/shid
a normalization constant which is determined by the requiremenifluit / (1) = 1. For
s[(2), we haveT = [0, 2] andJ (z) = sin’(zrz). The functions (2.21) are then given by

2

k
Jex (@) = Ny (Z sin((x + Dmx) sin(m)) (2.22)
A=0

forz € [0, 1), wherek € Z.gandx = (u+1)/(k+2)withu € {0, 1, ... , k}. The examples
plotted in Fig. 1 are for conjugacy classes= 1/6 and ¥2 and for levelsc = 4, 10 and

28.

Closer inspection of thel(2) data also shows that the sharpness of the localization scales
with k + g¥. More specifically, for any given conjugacy classand any fractionp of
k = (k +2)71, the integrated densit; , := f;j:/;dz f(z) depends only very weakly
on the level. In fact, we have collected extensive numerical evidence that even after taking
this rescaling into account, the localization improves when the level gets larger, i.e. that
I , (k) is monotonically increasing with. (The improvement is not spectacular, though.

For instance/,—. 1 rises from 0.9829 &t = 3 to 0.9889 ak = 20 and/,—, 3 rises from
0.6063 to 0.6074.)

Note in particular that all brane world volumes are concentratesegular conjugacy
classes and that already at small level the overlap with the exceptional conjugacy classes
(i.,e.x = 0andx = 1forg = sl(2)) is negligible. Indeed, as is clearly exhibited by the last
mentioned data, even the levdpendenallowed conjugacy classes that, at fixed level, are
closest to an exceptional class (ixe= « for g = sl(2)) arenotdriven into the exceptional
one in the infinite level limit. (Thus, in this respect, our findings do not agree with the
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Fig. 1. The function (2.22) for branes centered at the conjugacy classely6 andx = 1/2 for levels 4, 10 and
28.

prediction of the semi-classical analysis in [5,6]. The origin of this discrepancy appears to
be the absence of the shift> k + g in the classical setup. This shift occurs also naturally
in other quantities like e.g. in character formulae and conformal weights.) This result will

be confirmed by the investigation of the algebra of boundary operators, to which we now
turn our attention.

3. The algebra of boundary fields

In this section we focus our attention on the operator product algebra of (WZW-primary)
boundary fields. As afirst basic ingredient, we need to determine by which quantum numbers



G. Felder et al. / Journal of Geometry and Physics 34 (2000) 162—-190 171

such a field is characterized. Boundary points are precisely those points of a surface that
have a unique pre-image on its Schottky cover. Accordingly, on the level of chiral conformal
field theory, boundary operators are characterized by a single primarylgb&/hen all
bulk symmetries are preserved, this label takes its values in the set of chiral bulk labels. (In
the presence of symmetry breaking boundary conditions, the analysis has to be refined, see
[7,8].) Moreover, a boundary operator typically changes the boundary condition; therefore,
it carries two additional labelg, 8 which indicate the two conformally invariant boundary
conditions at the two segments adjacent to the boundary insertion.

Boundary operators are therefore often Writtenpéjg (x). But, in fact, this is still not
sufficient, in general. The reason is that field-state correspondence requires to associate to
everystate that contributes to the partition function

At = Sl 2 (3) 61

for an annulus with boundary conditionsand 8 a separate boundary field. For symmetry
preserving boundary conditions, the annulus coeﬁicieg’%sare known [4F to coincide
with fusion rule coefficients

Agﬁ = Ng, (3.2)

The fusion rulesvg‘u are not, in general, zero or one; as a consequence one must introduce
another degeneracy labdl, taking values in{1,2,..., Ny+g,} [6,7,9]. The complete
labeling of boundary operators therefore looks like

e (). 3.3)

We remark in passing that in more complicated situations, like e.g. symmetry breaking
boundary conditions [7] or non-trivial modular invariants [10], the degeneracy spaces rel-
evant for the boundary operators still admit a representation theoretic interpretation that
involves appropriate (sub-)bundles of chiral blocks.

The boundary fields satisfy an operator product expansion which schematically reads

)vll Nzxv
WP wfBY (y) ~ 3NN I LY () + -1, (3.4)
v L=1C=1
whereL € {1,2, ..., N;#} labels a basis of the space of chiral couplings floandu to

v. For every (rational) conformal field thoery, the structure constﬁfjﬁf’”c appearing
here are nothing but suitable entries of fusing matriees

&
ABByC A
cyapire = (FchAﬂ+B[ N ’;D . (3.5)

2 For WZW models, we are actually also interested in the horizontal descendants, which have the same conformal
weight as the primary field. Theh should be regarded as a pair consisting of both the highest weight and the
relevant actuafi-weight. Correspondingly, in the operator product (3.4) below one must then in addition include
the appropriate Clebsch—Gordan coefficientg.of

3 Compare also [6] for arguments in a Lagrangian setting.
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Recall that the fusing matrices describe the transition betweesdhd ther-channel of
four-point blocks; pictorially, in our conventions, this relation looks like

A B

p = Z FKpL,MUN[it,L] : mMH—2 s N

. v (3.6)

To establish the identity, we observe that the operator product coeffim}gﬁg ve
furnish a solution of the sewing constraint [11,12] that arises from the two different factor-
izations of a correlation function of four boundary fields. Including all degeneracy labels,
this sewing relation reads

NU
vp
ZCaAﬁByECyCSDaE czEyEa Z Z Z ZCﬂByCBF aAﬁFBDCaD(SDa
kAKp wvLpt ppt 2 Mo koNvt “vtug
= 0 M=1N=1F=1

A
‘Fuon. koL |: f ] , (3.7)

whereF [k “} is the fusing matrix which relates the two different factorizations. For
K v

WZW models, the fusing matrices coincide with thg-€§/mbols of the corresponding
guantum group with deformation parametek @ g"'th root of unity. The constraint (3.7)

can be solved explicitly in full generality, without reference to the particular conformal field
theory under investigation. First note that the structure cons(éﬁh”t By depend on six

chiral and four degeneracy labels, so that their label structure is precisely the same as the
one of the fusing matrices. The key observation is then to realize the similarity between the
constraint (3.7) and the pentagon identity

g,
ZFK +A.B +E|: p+i|'FL +EC8+D|:M U}
KFABYTE | gt prE, yt

o
E=1

Nﬁa

CEY 3 [ ]

o M=IN=1F=1
o V V
‘Fneta, Fs+D |:/3+ oz} “Frotk . MoN [f "i| (3.8)

for the fusing matrice$. Indeed, it is not too difficult to show that under the identification

4The structural similarity between the factorization constraint (3.7) and the pentagon identity was already used
in [9] to deduce the identification (3.5). In this context, we would like to stress that the fusing matrices are entirely
defined in terms of chiral conformal field theory.
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(3.5) the constraint (3.7) becomes —after exploiting the tetrahefifa) 6ymmetry [13]
of the fusing matrices in order to replateome of the fusing matrix entries by different
ones —nothing but the (complex conjugated) pentagon identity (3.8).

A more direct way to understand the result (3.5) is by interpreting the boundary fields

tI/fAﬂ as (ordinary) chiral vertex operators, which pictorially amounts to the prescription
A
AB =
a4 g (3.9

The operator product (3.4) then describes the transition

A "
A 7
L
L1 - F
a A B B 7
A (3.10)

from which one can read off the desired identification (3.5) between boundary structure
constants and fusing matrices.

Thus we conclude that the boundary structure constants are indeed nothing but suitable
entries of fusing matrices. (For the case of Virasoro minimal models, this has already been
observed in [14] using special properties of those models.) It should be noted, however,
that the fusing matrices are not completely determined by the pentagon identity and their
tetrahedral symmetry. Rather, there is a gauge freedom related to the possibility of perform-
ing a change of basis in the spaces of chiral three-point couplings. In the present setting,
the gauge invariance corresponds to the freedom in choosing a basis in the space of all
boundary fieldsl/f’A’g with fixed A ande, 8. Once the gauge freedom has been fixed at the
level of chiral three-point couplings, it is natural to make the same gauge choice also for
the boundary fields.

We now show that, upon appropriately taking the limit of infinite level, the algebra of
those boundary operators that do not change the boundary condition approaches the algebra
F(G/T) of functions on the homogeneous spaterl’, whereT is a maximal torus of the
Lie groupG. This space5/T is of interest to us because every regular conjugacy class
of G is, as a differentiable manifold, isomorphic &/ T. Our result therefore perfectly
matches the fact that the fusing matrices of WZW models can be expressed with the help
of k + g¥th roots of unity, i.e. again the levelgets shifted by the dual Coxeter numiget.
Correspondingly, the weights are shifted by the Weyl vector so that, again, we are naturally
led to regular conjugacy classes.

5 Note that the tetrahedral transformations that do not preserve the orientation of the tetrahedron involve complex
conjugation of-. Also, by the tetrahedral symmetry, the structure constants involving the vacuuniabeljust
combinations of quantum dimensions, and these precisely cancel against the quantum dimensions coming from
the other tetrahedral transformations that have to be performed. More details will be given elsewhere.
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We start our argument by regarding the algeb(&/ T) as a leftG-module only, rather
than as an algebra. The modulgG/T) is fully reducible and can be decomposed as
follows. According to (2.11), the spad®&(G) of functions onG is aG-bimodule under left
and right translation. Since the right actionfobn G is free, we can then identiff (G/ T)
with the subspace df-invariant functions orG,

F(G)T) = FG)T = @Pﬂx ® H+)T. (3.11)

Furthermore, invariance under the maximal tofugist picks the weight space for weight
zero. Thus we find

F(GT) = @Pmunm (3.12)
re

as an isomorphism gfmodules, where mtgt) is the multiplicity of the weightt = Ointhe
irreducible moduléH,, with highest weight.. Thus, in particular, only modules belonging
to the trivial conjugacy class gfmodules appear in the decomposition (3.12). Recall that
the boundary operators are organized in terms of modjexf the affine Lie algebrg. Our
aim is to show that the algebra of boundary fields that correspond to states of lowest grade
in the moduleg,,, i.e. which are either primary fields or horizontal descendéntssries
a left G-module structure that in the limit of infinite level coincides with the decomposition
(3.12).

When restricting to this finite subspaég of boundary operators, via field-state corre-
spondence the annulus amplitudes tell us thatarries the structure of @module and
as aG-module it is isomorphic to the direct sum

Fe= @ ALH, (3.13)
w,ve Py

of irreducibleG-modules. Thus, to perform a more quantitative analysis of the algebra of
boundary operators, we need to control the values of the annulus coeffiﬁi:gnt§ince
according to the identity (3.2), as long as all bulk symmetries are preserved, these numbers
just coincide with the fusion rules coefficienzs}w = N,+,,, We are interested in concrete
expressions for the fusion rules. It turns out that they can be expressed through suitable
weight multiplicities in the following convenient form:

1
Nws = T D clwne) Y muttl i pagy (314)
w1, wreW BelLY
HereW is the Weyl group ofj ande its sign function, and the sum ovgrextends over the
coroot latticeL"> of g. The relation (3.14) can be derived by combining the Kac—Walton
formula for WZW fusion coefficients with Weyl's character formula and Weyl's integration
formula. For details, see Appendix A.

6In general conformal field theories, there is no underlying ‘horizontal’ structure, unlike in WZW models. It is
not clear whether, in general, it is the set of states of lowest conformal weight, or e.g. the quotient (called ‘special
subspace’) ofH, that was introduced in [15], that is relevant in this argument. But already for WZW models this
truncation is not sufficiently well understood.
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We are interested in the behavior of the numbers (3.14) in the limit of larges for
boundary conditions, this limit must be taken with care. As we have seen, they can be labeled
either by conjugacy classes of group elemegtsr by the correspondingrweightse. But
the relation (2.7) between these two types of data involves explicitly thedegelthat we
have to decide which of the two is to be kept fixed in the limit. In the present context, we
keep the conjugacy classes fixed. Accordingly we consider two sequences, denpged by
andvy, of weights such that

Vo= Z: +gf and y, = Zk++g€ (3.15)
do not depend or (and exg2riy,) and exg2riy,) are regular elements of the maximal
torusT of G).

In terms of these quantities, in formula (3.14) the multiplicity of the weight

pic = (k + g (—wi(yw) + wa2(yw) — B) (3.16)

appears, with fixed,, andy, (and fixedwy, wo and g). At largek this weight becomes
larger than any non-zero weight of the mod#dg, except when the relation

—w1(yu) +w2(yy) — B =0 (3.17)

is satisfied. As a consequence, at large level, the action of the elamehthe Weyl group
W of g on the regular element, must coincide with the action of the elemént;, 8) of the
corresponding affine Weyl groujy’ on yu.. This, however, is possible only whep = y,
and then it follows tha = 0 as well asw; = wy. Thus the requirement (3.17) hg¥|
many solutions. We thus obtain in the limit of infinite level

N N = 8y, MUIS”. (3.18)

In view of the relation between fusion rules and annulus coefficients we thus learn that, in
the limit of large level, only those pairs of boundary conditions contribute which correspond
to identical conjugacy classes, or in other words, only those open strings survive which
start and end at the same conjugacy class. (For every finite valyéoivever, such open
strings are still present.) Moreover, in this limit the non-vanishing annulus partition function
becomes

lim Ay, (1) = > mult§? i /2). (3.19)
rEP

so that (3.13) simplifies to

lim F, = @& multy)#,. (3.20)
k—o00 rEP

This space is indeed nothing h#(G/T) as appearing in (3.12). Our result indicates in
particular that the algebra of boundary operators that do not change the boundary condition
is related to the space @iinctionson the brane world volume. This should be regarded as
empirical evidence for a statement that is not obvious in itself, since in general non-trivial
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vector bundles over the brane can appear as Chan—Paton bundles, so that boundary operators
might as well be related to sections of non-trivial bundles rather than to functions.

In summary, in the limit of infinite level those boundary operators that belong to states in
the finite-dimensional subspagg, 7, of lowest conformal weight furnish@-module
that is isomorphic to the algebfa(G/T) of functions on a regular conjugacy class, seen
as aG-module.

So far we have considered the spaces of our interest ordym®dules. But we would
like to equip both7(G) and the space of boundary operators also with an algebra structure.
The operator product algebra of boundary operators, whose structure constants are, as we
have seen, fusing matrices, obeys certain associativity properties. These properties are not
immediately related to ordinary associativity, because the definition of the operator product
involves a limiting procedure.

Several proposals have been made recently for the relation between the operator product
algebra of boundary operators and the algebt@/ 7). An approach based on deformation
guantization was proposed in [16]. The definition of the product then involves fixing the
insertion points of the two boundary fields at prescribed positions in parameter space. As
the theory in question isot topological, one is thus forced to introduce arbitrary and
non-intrinsic data — in contrast to the situation with topological theories studied in [17].
Another proposal [18] starts from a restriction of the operator product algebra to fields
that correspond to the states of lowest conformal weight in the affine irreducible modules.
This destroys associativity. The prescription in [18] also allows only for open strings that
have both end points on one and the same brane. This is difficult to reconcile with the fact
that (compare formula (3.19) above) open strings connecting different branes can only be
ignored in the limit of infinite level.

4. Symmetry breaking boundary conditions

We now turn to boundary conditions of WZW models that break part of the bulk sym-
metries. One important class of consistent boundary conditions can be constructed by pre-
scribing an automorphism of the chiral algebra that connects left movers and right movers
in the presence of a boundary. In this case the boundary condition is said tautawgor-
phism typav. We point out, however, that also boundary conditions are known for which
no such automorphism exists. A WZW example is provideddp) at level 1; in this
example, there is a conformal embedding with a subalgebra isomorptii@tat level 10,
and one can classify boundary conditions (see [9]) that preserve ordi($haymmetries.
However, no general theory for such boundary conditions without automorphism type has
been developed so far and we will not consider them in the present paper.

Every boundary condition preserves some subalg@bdd the full chiral algebra;
because of conformal invarianc#,contains the Virasoro subalgebrasf For boundary
conditions that do possess an automorphism type preserved subalgebac $ can
be characterized as an orbifold subalgebra, namely as the aRfebrd<“> consisting of
elements that are fixed under A theory treating such boundary conditions for arbitrary
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conformal field theories has been developed in[7,8]. In the case of interest to us, the relevant
automorphisms of the chiral algebra are induced by automorphiswifsthe horizontal
subalgebrg of the untwisted affine Lie algebrathat preserve the compact real form of
g. Via the construction (1.4) of affine Lie algebras as centrally extended loop algebras,
every such automorphism extends uniquely to an automorphismgoBy a slight abuse
of notation we denote this automorphismddytoo.

We briefly summarize some of the results that we will derive in this section. In the
same way that symmetry preserving boundary conditions are localized at regular conjugacy
classes, the boundary conditions of automorphism éypee localized at the submanifolds

C&(h) := {ghw(g) g € G}, (4.1)

to which we refer as twined conjugacy classes with G of the form (2.6). In the case of

s[(2) or, more generally, wheneveris an inner automorphism @f the twined conjugacy
classes are just tilted versions of ordinary conjugacy classes. More precisely, they can be
obtained from ordinary conjugacy classes by right translaﬁ@ﬂ‘,(h) =Cg(hy s~ 1.

In the case of outer automorphisms, the dimension of twined conjugacy classes differs
from the dimension of ordinary ones. While ordinary regular conjugacy classes are isomor-
phic to the homogeneous spaG¢ T, twined conjugacy classes for outer automorphisms
turn out to be isomorphic t6/ Ty’, whereT$’ is a subtorus of the maximal tor@s For in-
stance, fog = sl(3) the dimension of regular conjugacy classes is@ifhl’) = 8—2 = 6,
while for outer automorphisms twined conjugacy classes have dimensiq@difyf) =
8 — 1 = 7. The increase in the dimension actually generalizes a well-known effect in
free conformal field theories, where all automorphisms are outer, to the non-abelian case.
Namely, in a flatZ-dimensional background the relevant automorphism, which is an ele-
ment of Qd), determines the dimension of the brane and a constant field strength on it. In
particular, non-trivial automorphisms can change the dimension of the brane.

The boundary state8 for symmetry breaking boundary conditions of automorphism
type w are built fromtwisted boundary blockss’ [8]. For the latter, the Ward identities
(2.2) get generalized to

BYo(J'®1+1®w(J4,)) =0. (4.2)

To proceed, we need some further information on automorphisgthef preserve the com-

pact real form. Such automorphisms are in one-to-one correspondence to automorphisms
of the connected and simply connected compact real Lie gébwhose Lie algebra is the
compact real form of. For each such automorphisothere is a maximal torus of G that

is invariant undeto. The complexificationt of the Lie algebra of” is a Cartan subalgebra

of g. The torusT is not necessarily pointwise fixed underThe subgroup

T :={t € T|w@) =t} (4.3)

of T thatis left pointwise fixed undet can have several connected components [19,20].
The connected component of the identity will be denoted§y

The automorphismy of g can be written as the composition of an inner automorphism,
given by the adjoint action Adof some element € T, with a diagram automorphism,:
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~1
w(g) = w.(SgS ); (4.4)

without loss of generality; can be chosen to be invariant underw (s) = s. Let us recall
the definition of adiagram automorphismAny symmetryo, of the Dynkin diagram of
induces a permutation of the root generatdtsthat correspond to the simple rootsgf
with respect to the Cartan subalgelgraccording to

E > w.(E) :== E%". (4.5)

This extends uniquely to an automorphismof g that preserves the compact real form and
is called a diagram automorphismgfWhenw is an inner automorphism then the diagram
automorphism in the decomposition (4.4) is the identity; in generakccounts for the
outer part ofw. Also note that, for inner automorphisn¥s? is the full maximal torug".

As w leaves a Cartan subalgeliranvariant, there is an associated dual nagpon the
weight space* of g. Applying the condition (4.2) for the zero modes, ire= 0, one
sees that non-zero twisted boundary blocks only exissyonmetric weightd.e. weights
A satisfyingw*(1) = XA. Note that relation (4.4) implies that' (1) = w%()), so that in the
case of inner automorphisms all integrable highest weiglentribute.

Next, we explain what the coefficients in the expansion of the symmetry breaking bound-
ary states with respect to the twisted boundary blocks are, i.e. what the correct generalization
of the numbers, /S .« appearing in formula (2.4) is. We have seen in (2.5) thadfer
id, these coefficients are given by the characjer®f G, evaluated at specific elements
(2.7) of the maximal torug'. For general, the analogous numbers have been determined
in [21]. For the present purposes it is most convenient to express them as sawadieg
characterd22,23], evaluated at specific elementsof T.

Let us explain what a twining character is. To any automorplasshg we can associate
twisted intertwiners,,, that is, linear maps

e, : 7‘21 — ﬁwq (4.6)
betweerg-modules that obey the twisted intertwining property
O, 0o R)(x) = Ry p(w(x)) 0 O 4.7)

for all x € g. By Schur’'s lemma, the twisted intertwiners are unique up to a scalar. For
symmetric weightsp* (1) = A, the twisted intertwine®,, is an endomorphism. In this case
we fix the normalization o, by requiring that,, acts as the identity on the highest weight
vector. For symmetric weights, the twining characté&ris now defined as the generalized
character-valued index

X2 (h) = try, Ow Ry (h). (4.8)

Character formulae for twining characters of arbitrary (generalized) Kac—Moody algebras
have been established in [22,23].

Finally, we describe at which group elemegtse G the twining character must be
evaluated in order to yield the coefficients of the boundary state. The infggraights
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form a lattice LW consisting of all elements of of the forma = Y193/ A that
obey A’ e Z for all i. Both the Weyl groupW% and the automorphismw* act on this
lattice. We will also need a lattickf)y that contains the lattice!! of integral symmetric
g-weights, i.e. of integral weights satisfyingf (L) = A or, equivalently ! = A’ for
alli =1,2,...,ranky. The latticeM)) consists of symmetrig-weights as well, but we
weaken the integrality requirement by imposing only that’ e Z for all i. Here N;
denotes the length of the corresponding orbit of the Dynkin diagram symmagtrifor
brevity we call this latticely the lattice offractional symmetric weight8y construction,
the lattice M is already determined uniquely by the outer automorphism class bf
particular, whem is inner, then boti/}) and the symmetric weight lattide just coincide
with the ordinary weight latticé.".

The latticeL" of integral weights ofj has as a sublattice the lattife of integral linear
combinations

rankg
=Y pia® (4.9)
i=1

of simple corootsy®V. In analogy to what we did before for weights, we also introduce
another latticet,, the lattice ofractional symmetric coroof$y requiring that*(8) = B
andN; B; € Z for all i. We have the inclusions;, € M,;J andL) € M.

On both the latticés)) of fractional symmetric weights and the latti¢€) of fractional
symmetric coroots, we have an action of a natural subgigtpof the Weyl groupw,
namely of the commutant

W = {w € Wwo* = o*w}. (4.10)

The groupW® depends only on the diagram part of w; in particular, for inner auto-
morphismsw* is the identity and henc®® = W. For outer automorphism&/® can be
described explicitly [23] as follows. For the outer automorphisméf W< is isomorphic
to the Weyl group ofC,,; for Ay, 1 to the Weyl group o3, 1; for D, to the one oiC,,_1;
and for Eg to the Weyl group offy. Finally, for the diagram automorphism of order three
of D4 one obtains the Weyl group @f». (This whole structure allows for a generalization
to arbitrary Kac—Moody algebras, and the commutant of the Weyl group can be shown to
be the Weyl group of some other Kac—Moody algebra, the so-called orbit Lie algebra [22].)
The groupW® also acts on the fixed subgro@}¥ of the maximal torug". One can show
that the twining characters (4.8) are invariant under the actiolf ©f which generalizes
the invariance of ordinary characters under the full Weyl gréup

To characterize the symmetry breaking boundary conditions, we now choose some frac-
tional symmetric weight € M. It is not hard to see that the group element

hy = eXpP(2iyy), (4.11)

wherey, is the corresponding dual elementin the Cartan subalgebrg, i.e. (¢ +p)/(k+
g"), depends or only modulo fractional symmetric coroots. Moreover, the subgréidp
of the Weyl groupW acts freely on the set of all,; there are as many different orbits as
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there are symmetric integrable weights. Accordingly, we should actually regard the label
of a boundary condition of automorphism types an element

o e MY /(W x (k+g")M)). (4.12)

Aboundary condition is then uniquely characterized by an element of this finite set. Leetting
run over this set, we obtain all conformally invariant boundary conditions of automorphism
typew.

Let us list a few other properties of the group elemigntlit is an element of the fixed
subgrouprl'® of the maximal torus, or more precisely, of the connected compdfe alf
the identity of7¢. Moreover, it is a regular element Gf.

Furthermore, it should be mentioned that in the special case of outer automorphisms of
g = Ay, thereis an additional subtlety in the description of the twined conjugacy classes. It
arises from the fact [21] that in this case the extension of the diagram automorphjsm of
the affine Lie algebrg does not exactly give the diagram automorphisig dhe additional
inner automorphism gf is taken into account by the adjoint action of an appropriate element
s, of the maximal torus. Namely, denote by the dual of the weighﬁ(A(n) + Ap+),
i.e. the Cartan subalgebra element such thatx) = %(A(n) + A1) (x) for all x in
the Cartan Subalgebra gf Then, for outer automorphisms ag,,, formula (4.11) must be
generalized to

he 1= eXp(2riyy) exp(2rix,). (4.13)
We are now finally in a position to write down the boundary states explicitly; we have

BY = Z X (he)BY (4.14)
repP?

with P’ the set of symmetric weights iR;. For trivial automorphism typey = id, we
recover formula (2.4).

Fortunately, all the group theoretical tools that we used in the previous sections have
generalizations to the case of twining characters (for details see Appendix B). Therefore,
once we have expressed the boundary states in the form (4.14), we are also able to generalize
the statements of Sections 2 and 3 to the case of symmetry breaking boundary conditions.
For instance, recall that ordinary characters are class functions,

x.ahg™h = x.(h), (4.15)

i.e. they are constant on conjugacy claséeg2.10). Combining the cyclic invariance of
the trace and the twisted intertwining property (4.7) of the ngpsone learns that twining
characters argvined class function the sense that

X3 (gho ()™ = x3°(h). (4.16)
As a consequence, thwined conjugacy classes

Ce(h) = {gho(2)*g € G} (4.17)
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and thetwined adjoint action
w . -1
Ady @ h > gho(g) (4.18)

(i.e. the twined version of the adjoint action Adf ¢ € G) will play exactly the roles
for symmetry breaking boundary conditions that ordinary conjugacy clas@s and
ordinary adjoint action Ag play in the case of symmetry preserving boundary conditions.
We refrain from presenting details of the calculations; for some hints and for the necessary
group theoretical tools, such as a twined version of Weyl's integration formula, we refer to
Appendix B.

We summarize a few properties of twined conjugacy classes (for details see Appendix
B). Every group elemeng € G can be mapped by a suitable twined adjoint maf o
For regular elements € G, the twined conjugacy class is isomorphic, as a manifold with
G-action, to the homogeneous space

Co(h) = G/TS. (4.19)

For outer automorphisms, the following intuition appears to be accurate. The twined
conjugacy classes are submanifoldsGbf higher dimension. To characterize them by
the intersectiori with elements of the maximal torus, it is therefore sufficient to restrict
to the symmetric parT of the maximal torus (and even to the connected compaorgnt
of it). In contrast, for an inner automorphisin= Ad; with s € G, the twined conjugacy
classes have the same shape as ordinary conjugacy classes; indeed, they are just obtained
by right-translation of ordinary conjugacy classes:

Co% (h) = Co(hg s~2. (4.20)

The twined analog of the formula (3.17) requires only the symmetric part of the weight
to vanish (because in the twined analog of (A.6) only equality of the symmetric parts of the
weights is enforced by the integration). As a consequence, at fixed automorphism type
the large level limit (3.20) of the boundary operators gets replaced by

lim F® = @& multy) 7, 4.21
k— 00 k )L?p to"‘)’H}\ ( )

where mulgc)u stands for the sum of the dimensions of all weight spacés;dbr weights
whose symmetric part vanishes. The limit }im F;” again yields the algebra of func-
tions on the brane world volume which in this case is isomorphic, as a manifold, to the
homogeneous spacg/ 755’

7 One word of warning is, however, in order. The orbits of twined conjugation intefgeirt several points, but,
in contrast to the standard group theoretical situation, the intersections are not necessarily related by the action of
W<. Rather, a certain extensio¥(7§’) of W, to be described in Appendix B, is needed [19,20].
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5. Non-simply connected group manifolds

In this section we extend the results of the previous two sections to Lie group manifolds
G that are not simply connected. Before we present our results in more detail, we briefly
outline them for the grour = SO(3). As is well-known, SO(3) is obtained as the quotient
of the simply connected group SU(2) by its cerifer We will see that to every symmetry
preserving boundary condition for SO(3) we can again associate a conjugacy class of SO(3).
The latter are projections of orbits of conjugacy classes of the covering group SU(2) under
the action of the centef,. Thinking of the group manifold SU(2) as the three-sphere
$3 with the north pole being the identity elemenf and the south pole the non-trivial
element-1 of the center, the action of the center is the antipodal magPolhe conjugacy
classes that are related by the center are then those having the same ‘latitugfe’ on
Those conjugacy classes which describe boundary conditions must obey the same integrality
constraints as in the SU(2) theory. Explicitly, at le¥ethe two SU(2) conjugacy classes
(A+p)/(k+g¥)and(k—Ar+p)/(k+g") give rise to a single boundary condition for SO(3).

An additional complication arises for the ‘equatorial’ conjugacy chass k/2, which is
invariant under the action of the center; it gives rise to two distinct boundary conditions.
Also note that all automorphisms of SO(3) are inner, and thus in one-to-one correspondence
with automorphisms of SU(2). Symmetry breaking boundary conditions of SO(3) therefore
correspond to tilted SO(3) conjugacy classes.

This picture is reminiscent of the phenomena one encounters in orbifold theories, and
indeed the WZW theory based on the group SO(3) can be understood [24,25] as an orbifold
of the SU(2) WZW theory. Branes of the orbifold theory correspond to symmetric brane
configurations in the covering space; branes at fixed point sets give rise to several distinct
boundary conditions, known as ‘fractional branes’ [26]. We point out, however, the following
additional feature that is revealed by our analysis. Namely, in case the orbifold group admits
non-trivial two-cocycles, branes at fixed point sets do not necessarily split. To what extent
a splitting occurs is controlled by the cohomology class of the relevant two-cocycles.

Letus now describe our results more explicitly. For the time being, we restrict our attention
to boundary conditions that preserve all bulk symmetries. The compact connected simple
Lie groupG can be written as the quotient of a simply connected, compact and connected
universal covering grou@ by an appropriate subgroup of the center ofG. There is a
natural projection

7:G—>G (5.2)

whose kernel is the finite group. As a consequence, the WZW theory basediooan
be seen as an ‘orbifold’ of the theory based®n(It should be pointed out, however, that
the term ‘orbifold’ is used in this context in a broader sense than is commonly done in the
representation theoretic formulation of orbifolds in conformal filed theory, compare e.g. to
[27].)

It is known [24,25] that the WZW theory on a non-simply connected group manifold
is described by a non-diagonal modular invariant that can be constructed with the help
of simple currents. The relevant simple currents are in one-to-one correspondence with
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the elements of the subgroup of the center ofG. In the most general situation, the
non-diagonal modular invariant in question is obtained by applying a so-called simple
current automorphism to a chiral conformal field theory that is itself constructed from the
original diagonal theory by a simple current extension [28]. For the sake of simplicity, in the
sequel we will discuss only such conformally invariant boundary conditions for which only
one of the two mechanisms, i.e. either a simple current automorphism or a simple current
extension, is present. FGf = SU(2), bothcases correspond to the non-simply connected
quotient S@3) = SU(2)/Zy; the former arises for levels of the fortn = 2 mod 4,

where one deals with a modular invariant@§yq-type, while the latter appears for levels

k = 0mod 4 and corresponds to a modular invariantiad,errtype.

We first consider simple current extensions. We can then invoke the general result that
boundary conditions preserving all bulk symmetries are labeled by the primary fields of
the relevant conformal field theory, which is now not the WZW theory corresponding to
G, but the conformal field theory that is obtained from it by the simple current extension.
This extended theory can be described as follows [29]. Its primary fields correspond to
certain orbits of the action df on the primary fields of the unextended theory. But only a
certain subset of orbits is allowed, e.g. tor= SO(3) only those that correspond to integer
spin highest weights. We will see later, however, that the other orbits describe conformally
invariant boundary conditions as well. Those boundary conditions do not preserve all sym-
metries of the extended chiral algebra, but they still preserve all symmetries of the chiral
algebra for theG-theory.

We also must account for the fact that the actiofl @h the set of orbits is not necessarily
free.8 Whenitis notfree, then there are several distinct primary fields associated to the same
orbit. For determining the number of primaries coming from such an orbit, one must take
into account the fact that the action of the simple current group is in general only projective;
an algorithm for solving this problem has been developed in [29]. We summarize these
findings in the statement that the boundary conditions of the WZW theory baséd on
correspond to orbits of conjugacy classegofinder the action of, with multiplicities
when this action is not free.

Next, we study the case of automorphism modular invariants. For this situation the bound-
ary conditions that preserve all bulk symmetries have been found in [18] forSU(2) and
in [10] for the general case. They are labeled by orbits of the actidhasf primary fields,
or, equivalently, on conjugacy classes. Again, when this action is not free, then there are
several inequivalent boundary conditions associated to the same orbit. On disks with bound-
ary conditions that come from the same orbit, bulk fields in the untwisted sector possess
identical one-point functions, but the one-point functions of bulk fields in the twisted sector
are different for different boundary conditions of this type. They differ in sign, and the ab-
solute values are controlled by the matriéésthat describe the modular S-transformation
of one-point chiral blocks on the torus with insertion of the relevant simple curd¢héy.

8 While the (left or right) action of™ on individual group elements is obviously free, the action on conjugacy
classes can be non-free, siricandeh with € € I' can belong to the same conjugacy class.
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To provide a geometrical interpretation of these results, we first relate conjugacy classes
of the groupG to conjugacy classes of its covering grolGp The conjugacy claség (k)
of an element: € G in the non-simply connected group can be written as the image
under the mapr (5.1) of several conjugacy classés of the universal covering group.
We claim that

7Y Co ) = Cseh), (52)

eel

wherei € G is any a lift ofh, i.e. 7 (k) = h. To see that the set on the right-hand side of
(5.2) is contained in the set on the left-hand side, we note that its elements are of the form
gehg~1for someg € G and some € I'. Further, we have

n(gehg™) = n(@n () (™Y = ghg™, (5.3)

whereg is the projectiont (g); sinceghg™? lies inCg (h), indeedgehg—1 is contained in
the left-hand side of (5.2). Conversely, assume #iat G is conjugate t&h € G, which
means thaghg™! = &’ for someg € G. There exists & € G such thatr(3) = g,
and every element of ~1(ghg™1) is of the form(e18)(e2h) (e3¢ 1) for suitable elements
€1, €2, €3 € I". Using that the:; are central inG, this means that ~1(#) lies in the set on
the right-hand side of (5.2).

Let us now consider those conjugacy classes which are left invariant by some subgroup
I of I". (For example, the group manifold = SU(2) is a three-spher&® and the regular
conjugacy classes are isomorphic to sphefe®f fixed latitude; thus there is a single
conjugacy class that is fixed by the action of the ceftenf G, namely the equatorial
conjugacy class. At level, it corresponds to the weight = k/2 that is a fixed point
with respect to fusion with the non-trivial simple current of #1€2) WZW theory.) The
finite subgroud™ acts freely on such an invariant conjugacy cldssTherefore, the space
F(C,) of functions orC, can be decomposed into eigenspaces under the actinlafthe
simplest case, the subspaces just consist of odd and even functions, respectively. In general,
the decomposition reads

FCo) = @/ flﬂ(co), (5.4)
yel™*
where the eigenvalueg are given by characters of.

It follows that the boundary conditions for non-simply connected grammgsn be de-
scribed by conjugacy classes@Gfitself, with the important subtlety that those conjugacy
classes which are invariant under the action of the gugive rise to several distinct
boundary conditions. Our analysis reproduces, in particular, the following familiar features
of D-branes on orbifold spaces. Brane configurations on the original €pttat are sym-
metric under the action df give rise to boundary conditions in the quoti€ntindividual
branes that are invariant under a subgrblpf the orbifold groud” yield several boundary
conditions which differ in the contribution from the twisted sector; the coefficients in their
boundary states are reduced by a common factor, which is precisely the effect of fractional
branes [26].
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We can also describe the analog of the decomposition (5.4) of functions on invariant
branes for boundary operators. Again, we discuss simple current extensions and automor-
phisms separately. In the case of automorphisms, it was shown in [10] that the annulus
multiplicities are given by the rank of the sub-vector bundle of chiral blocks with definite
parity under the simple current automorphism. In the case of simple current extensions, the
annulus multiplicities are, according to [4], fusion rules of ¢heory. Moreover, general
results [29] on the fusion rules of a simple current extension show that the fusion rules of
the extended theory —that is, in our case, of €h¢heory —are given by sub-bundles of
definite parity as well. Just like for simply connected groups, our analysis therefore con-
firms the general idea that the algebra of boundary operators should be a quantization of
the algebra of functions on the brane world volume.

We also would like to point out one important subtlety in the analysis of invariant orbits.
The exact analysis [7] reveals that not all invariant orbits necessarily split off and give rise
to several boundary conditions. Rather, it can happen that the action of the stabilizer of
the orbifold group in the underlying orbifold construction is only projective, and in this
case even an invariant conjugacy class can give rise to only a single boundary condition. An
example is given b§; = Spin(8)/Z, x Z»; atlevel 2, there is a single conjugacy class that is
fixed underl”, and yet, due to the appearance of a genuirtevisted stabilizef29], it gives
rise to a single conformally invariant boundary condition. For more details, refer to [8].

We proceed to briefly discussing some aspects of symmetry breaking boundary conditions
for WZW theories on non-simply connected group manifolds. We first discuss which auto-
morphisms can be used. While every automorphisgritioét preserves the compact real form
gives rise to an automorphism of the universal covering gi@upuch automorphisms do
not necessarily descend to the quotient gréufRather, every automorphism 6frestricts
to an automorphism of the cent&rG) of G; for an inner automorphism this restriction
is the identity. The automorphisms 6fthat descend to automorphisms®f= G/ I are
precisely those that mdpto itself. Notice that the group @finerautomorphisms of; and
G coincide; in both cases this group is equal to the adjoint gGug (G) = G/Z(G).

The symmetry breaking boundary conditions for non-simply connected group manifolds
that come from automorphisms are therefore related to twined conjugacy classes of
much the same way as in the simply connected case, with the same subtleties arising for
twined conjugacy classes that are left invariant by some element of the center.

We finally remark that in the case of extensions, such as thogg fatrlevelk = 0 mod 4,
another type of symmetry breaking boundary condition exists forGkheory, namely
boundary conditions which only preserve the symmetries of the unextended theory, i.e.
of the G-theory. These come from automorphisms of the extended chiral algebra that act
as the identity on the unextended one. It has been demonstrated [7] that such boundary
conditions are labeled bg-primaries as well. As already mentioned, they correspond
to thoseI-orbits of conjugacy classes @ that are projected out in th€é theory. For
G = SO(3), for instance, they are obtained by projection from conjugacy class®s(aj
that are related to half-integer spin highest weights. We can therefore describe also this type
of boundary conditions by orbits @-conjugacy classes which by (5.2) project, in turn, to
G-conjugacy classes.
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Appendix A. Fusion rules

In this appendix we derive the relation (3.14) between fusion rule coefficients and weight
space multiplicities. We start with the observation that a character can, on one hand, be
written in terms of weight multiplicities

xa(hy =Y mP e (h), (A.1)
"
and on the other hand can be expressed in terms of Weyl's character formula as
x(h) = X71(0) Y e(w)e” O (). (A2)
weW

Here the sum is over the Weyl grodip of g, ¢ is the sign function oW, and

X(h) = ep(h)]_[(l — e %(h)) (A.3)

a>0

is the well-known expression for the denominator. (Up to an exponentiél & 1 is just
the character of the corresponding Verma module of highest wgiyht

Next we recall the Kac—Walton formula [30-33] for WZW fusion rules. It expresses the
fusion coefficientsv,,, as an alternating sum over a certain subkaif the affine Weyl
groupW. W consists by definition of those elements¥fthat map the fundamental Weyl
alcove to some alcove in the fundamental Weyl chamber. TH&Renishes a distinguished
set of representatives for the cod&f W, but Wis nota group. The representatives can be
characterized by the fact that they have minimal length. The Kac—Walton rule yields

N;w‘*'k = Z €(w) Lﬁ))(u+p)—p,v+,k’ (A4)
[e]
WeW
wherecl_ﬁw) i 1S the dimension of the space of singlets in the tensor prdﬂ%:(tm ®

H,+ ® H, of the three@—modules?-_llﬁw), #L,+ and#,.. This dimension, in turn, can be
expressed in terms of an integral over the corresponding characters as

£&’;(u+p)—p,v+,k = /Gdg Xuoj(wp)_p(g) X+ () x:.(8)
1
N W/Tdh T X0 1 py— p ) Xt (1) X (R, (A5)

where in the second line we have used Weyl's integral formula to reduce the integral to an
integral over a maximal torub of G.
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The next step is to insert the formula (A.5) into the Kac—Walton rule (A.4) and to recom-
bine the summations ové¥ andW. At the same time, we use the Weyl character formula
to rewrite the charactep% (ut0)—p andy,+, while the third character is expressed in terms
of weight multiplicities. We then arrive at

1 o
Nty = W/Tdh o22“016(10)1(}0 Xyt py—p M X (1) X3.(h)
We
1

=gy 2 cwnews) 3 /T dh w2 ETEIP (1) ()

w1, w2eW BelY
1

o Y ewne(wy)

w1, wreW

3% /T dh @10+ —w20-+0) 4808 1y mult®) ¢ (i)

o BelLY
1
_ (*)
- [W| Z €(wy)e(w2) Z mUIt—101(M+p)+u)2(v+,0)—(k+gv);‘3’ (A.6)
w1, w2eW BelLY

so that we have finally arrived at the relation (3.14). Here in the second line we have also
used the following two simple relations. First, the characters of two conjugate modules are
related as

o (h) = (b ™). (A7)

Second, the Jacobian factérin Weyl's integration formula can be expressed in terms of
X as

J(h) = X(h) X(h™Y). (A.8)

Together they allow us to cancel the two Weyl denominators against the volume factor
Theo-summation in the third line of (A.6) is over the weight systeniqf, and in the last
line the integral over the maximal tor@swas evaluated explicitly.

Appendix B. Twined conjugation

To investigate the properties of the twined conjugation (4.18), it turns out to be helpful to
relate it to the theory of non-connected Lie groups. The non-connected Lie groups for which
the connected component of the identity is isomorphic to a given real, compact, connected
and simply connected Lie group can be related to subgroups of the group of automor-
phisms of the Dynkin diagram of the Lie algelyavhose compact real form is the Lie
algebra of the grou. (This should not be confused with the relation between sionply
connected groups and automorphisms ofgktendedynkin diagram.) Namely, for every
subgroufd" of diagram automorphisms @f one can construct a Lie gro@pwith the group
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of connected components given y(G) = I" as the semi-direct product of the Lie group
G and the finite group’. Conversely, ifg is any element of a Lie grou@ that is not in
the connected component of the identity, then the adjoint actignmf the Lie algebra

g is given by anouter automorphismw, and therefore corresponds to a symmetry of the
Dynkin diagramg.

The non-trivial connected components®fire, as differentiable manifolds with metric,
isomorphic toG. We fix a connected componegt;, that corresponds to the elemeinbf
the group of Dynkin diagram symmetries@fThe adjoint action of any elemegte G of
the connected component of the identity ma&hsto itself. Taking any arbitrary element
2o € G4, we can write every element i@, ashg; with 2 € G, and we havev(g) =
gd)gg;l. For the adjoint action of € G we then find

Ad, (hg;) = ghw(g) " g = AdY(h) gi (B.1)

with o = w,,. We see that, after choosing an origip for G,,, ordinary conjugation by
g € G acts onk like twined conjugation. Changing the origis, changes the relevant
automorphism by an inner automorphism.

Now denote by

N(TY) = {g € Gl|gw(g) L e T for all 1t € T} (B.2)

thetwined normalizeof the connected componerfy’ in the fixed subgroup of the maximal
torusT. The quotient

W(T§) = N(T$)/T§ (B.3)

is called the Weyl group of . It can be shown [19,20] tha¥ (7’) is the product of
the subgroughV® of the Weyl group that was defined in (4.10) and a finite abelian group
I'(G, w). Moreover, the mapping degree of the mapping

Go: G/Ty x Ty — G

B.4
(TS, 1) P> gtax(g) ™ (B.4)

is [19,20] degy, = |W(T")|. In particular, the mapping degree is positiveggas surjec-
tive. This, in turn, implies that any group element®tan be mapped suitably by a twined
conjugation (4.18) intdy”, which generalizes the well-known conjugation theorems for
the maximal torus.

The determinant of,, can be computed. One finds at the pdithtz) with i € T

2
detg, = TG, o)/ |[] (1— ezﬂié(h)) = IT(G, w)| - J®(h), (B.5)
a>0

where the product is over a set of weights that are constructeddioarbits of positive
g-roots and which can be shown [22] to be isomorphic to the set of positive roots of the
so-called orbit Lie algebra that is associated teindw. (Recall thatW® is isomorphic to
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the Weyl group of the orbit Lie algebra .) Application of Fubini’'s theorem then yields the
twined generalization

1
[dsr@ =i [ s ([ a@m) r@wieo (B.6)
G \WelJre G/TY

of Weyl’s integration formula. Here g dh and dgTy) are the Haar measures on the
Lie groupsG andT” and on the homogeneous sp#g£Ty’, respectively. Obviously, the
integration formula is particularly useful for twined class functigts (see (4.16)), for
which it reduces to

1
/ dg x“(g) = / dh J° () (h). (8.7)
G |\WelJre
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